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Abstract. The interaction of self-oscillations and parametric oscillations under the influence of 

delayed elastic and damping forces in the presence of a limited power energy source in the system is 
considered. To construct solutions to a nonlinear system of equations, the direct linearization method was 
used, which contains the linearization accuracy parameter. Using this method, equations of non-stationary 
and stationary motions are obtained to determine the amplitude, phase of oscillations and the speed of the 
energy source. Based on the Routh-Hurwitz criteria, the stability of stationary modes of motion is considered 
and the stability conditions are derived. In order to obtain information about the effect of elastic delays and 
damping on the dynamics of the system, calculations were performed for various combinations of their 
values. The corresponding amplitude-frequency characteristics and a graph of the load on the energy source 
from the side of the oscillatory system are constructed.  

Keywords: self-oscillations, parametric oscillations, energy source, limited power, delay, elasticity, 
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Introduction. In many problems [1-9, etc.], it becomes necessary to take into 
account the phenomenon of hysteresis (delay). Among them, hysteresis can be noted: 
plastic in mechanics, ferromagnetic and dielectric in physics, in control problems, in 
biology, in automatic control, etc. The carriers of hysteresis are part of a more 
complex system and therefore should be considered together. At cyclically changing 
stresses, the maximum amplitude of which is significantly lower than the elastic 
limit, dynamic hysteresis is observed, which is caused by inelasticity or 
viscoelasticity. "In case of inelasticity, in addition to purely elastic deformation 
(corresponding to Hooke's law), there is a component that completely disappears 
when stress is removed, but with some delay, and with viscoelasticity, this 
component does not completely disappear with time" [Wikipedia]. The retardation 
effects appear depending on the yield and discontinuous deformation, specimen 
geometry, loading conditions and modes, as well as on the properties of the loading 
system. Hysteresis also occurs as a result of thermoelasticity, magnetoelastic 
phenomena, changes in the position of point defects, etc. The delay has a significant 
effect on the control process and the stability of the system, it can lead to oscillations 
in it, which arise, for example, in servo systems, regulators, rolling mills, etc. 
Therefore, the study of the effects caused by the influence of the delay is of great 
practical interest. 

For the analysis of nonlinear systems with delay, approximate methods are used 
(Bogolyubov-Mitropol'skiy averaging, harmonic linearization, energy balance, etc. 
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[10-19]), which are characterized by significant labor and time costs depending on 
the type of nonlinearity characteristics. Large expenditures of labor and time are one 
of the main problems in the analysis of the dynamics of nonlinear systems. With 
reference to works [20-23], this is indicated in [24], where it is noted that this 
problem exists for the study of coupled oscillatory networks that play an important 
role in chemistry, biology, physics, electronics, neural networks, etc. The method of 
direct linearization (MDL), described in [25-31, etc.], is fundamentally different from 
these methods. The advantages of the MDL over the well-known methods of 
analyzing nonlinear systems are simplicity and the associated low (several orders of 
magnitude less) labor and time costs, the absence of laborious and complex 
approximations of various orders, the possibility of obtaining final design relations 
regardless of the specific type and degree of nonlinearity. Using the MDL, below we 
consider the effect of delays in elasticity and damping on mixed parametric and self-
oscillations in the presence of a limited power source in the system that supports the 
functioning of the system.   

Model. Consider the well-known model (Fig.1) of a mechanical frictional self-
oscillating system [32-35]. Nonlinear differential equations describing its motion, 
taking into account the delays in elasticity and damping, have the form 

 
                                 0 0 ( ) cosm x k x c x T U bx t k x c xη η τ τν+ + = − − −                                    (1) 

0( ) ( )I M r T Uϕ ϕ= −   
where 0k const= , 0c const= , ( )T U  is a nonlinear friction force that depends on the 
relative velocity U V x= −   and causes self-oscillations, 0V r ϕ=  , ( )x x tη η= −  , 

( )x x tτ τ= − , constη = ,  τ const= , η  and  τ  are delays,  0 constr =   is the radius of the 
point of application of the friction force  ( )T U , I  is the total moment of inertia 
rotating parts, ( )M ϕ   is the difference between the torque of the power source and the 
torque of the forces of resistance to rotation, ϕ  is the speed of rotation of the engine. 
 

 
Fig.1. System model. 

 
Let us imagine the friction force ( )T U  with a widely used in practice falling 

characteristic of the coefficient of friction from the sliding speed, which was also 
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observed when considering the problem of measuring friction forces in space 
conditions [36]: 

                                    [ ]0( ) sgn ( )T U T U f x= +  ,        
3

0

( ) n
n

n
f x xδ

=
= ∑                               (2) 

1 at 0
sgn

1 at 0
U

U
U
>

= − <
 

Here 0T  is the normal reaction force, 0 0(0)T T T≤ ≤ ,  0 1
3

3V Vδ α α+= − , 1 1
2

33 ,Vδ α α−=   
2 33 Vδ α= ,  3 3δ α= − , 1α  and  3α  are constants.  

Using the MDL [25-31], replace the nonlinear function ( )f x  with a linear  
 ( ) T Tf x B k x∗ = +                                                        (3) 

where TB  and  Tk  are the linearization coefficients.  
The TB  and Tk coefficients are determined by the expressions 

                                    2
0 2 2TB Nδ δ υ= + ,            2

1 3 3Tk Nδ δ υ= +                                     (4) 
Here 

2 (2 1) (2 3)N r r= + + ,  3 (2 3) (2 5)N r r= + + , max xυ =    and the  r  symbol represent 
the linearization accuracy parameter. As shown in [25], it can be selected from the 
interval (0, 2). 

Taking into account (2) and (3), equations (1) take the form 
                            0 0 0 (sgn ) cosT Tmx k x c x T U B k x bx t k x c xη η τ τν+ + = + + − − −                        (5) 
 

0 0( ) (sgn )T TI M rT U B k xϕ ϕ= − + +    
 

The solution of the equation with linearization can be constructed by the method 
of change of variables with averaging [25], which makes it possible to consider 
stationary and non-stationary processes. In [25], for a linearized general equation, a 
standard form of relations for these processes was obtained. In accordance with this 
standard form, we can immediately write out the results of solving the first equation 
of (5), and for the second equation we use the averaging procedure described in [29]. 

Equation solutions. Note that there are two fundamentally different cases, 
determined by the characteristic of the friction force ( )T U  at 0U > , u ap≥  and 0U < , 
u ap< , where 0u r= Ω  and Ω is the average value of the speed  ϕ   of the energy 
source. To derive the relations for  u ap< , we use the technique described in [34]. 

By the method of change of variables with averaging noted above, we have 
                                         cosx a ψ= , sinx υ ψ= − , ptψ ξ= +                                 (6) 

where  a pυ = , 2p ν= .                      
Taking into account  cos( )x a pτ ψ τ= − , sin( )x pη υ ψ η= − − , we obtain from (5) the 

following equations for determining the non-stationary values of the amplitude  а, 
phase ξ  and velocity  u: 
а) u ap≥ : 

1 (2 sin 2ξ)
4

da aA ba
dt pm

= − −  
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                                                ξ 1 (2 cos2ξ)
4

d aE ab
dt pma

= +                                         (7,а) 

0
0 0( ) (1 )T

u
r

du r M r T B
dt I

 = − +  ; 

b) u ap< : 
0 2 2 21 82 sin 2ξ

4 π
da TaA ba a p u
dt pm ap

 
= − − − − 

 
 

                                    ξ 1 (2 cos2ξ)
4

d aE ab
dt pma

= +                                                     (7,b) 

                                    0 0
0

0
0( ) (1 ) (3π 2ψ )

πT
u
r

du r rTM r T B
dt I ∗

 = − + − −    
 
Here 0 0( cos ) sinFA p k k p T k c pη τη τ= + − − , 22

0( ) cosE m p c pτω τ= − + , 2
0 0c mω = , 

ψ 2π arcsin( )u ap∗ = − .  
Under the conditions  0a = , 0ξ = ,  0u = , equations of stationary motions are 

obtained from (7). In the case of  u ap< ,  the amplitude of stationary oscillations is 
determined by the approximate expression a u p≈ .  

In the case of  u ap≥ ,  the amplitude and phase of stationary oscillations are 
determined by the following expressions  
                                                

2 2 20.25A E b+ = ,      2ξtg A E= −                                    (8) 
The stationary values of the velocity are found from the condition  0u = , which 

gives the relation 
0( ) ( ) 0M u r S u− =                                                       (9) 

Here the function   S(u)   represents the load on the energy source and has the 
form 
а) u ap≥          →                            0 0( ) (1 )TS u r T B= +      
b) u ap<          →                           0 0

1( ) (1 ) π (3π 2ψ )TS u r T B −
∗ = − + −    

The calculated stationary values of the amplitude are used to construct the  S(u)  
curve. The point (s) of intersection of the curves 0( )M u r  and  S(u) determines the 
stationary value of the velocity  u.  In the case of  u ap< ,  the expression of the load 
on the energy source S(u) is simplified by taking into account the approximate 
equality ap ≈ u for the amplitude.   

Stability of stationary oscillations. To test the stability of stationary motions, 
we compose equations in variations for (7), use the Routh-Hurwitz criteria, and 
obtain 
                                                  1 0D > ,   3 0D > ,   1 2 3 0D D D− >                                 (10) 
where  1 11 22 33( )D b b b= − + + , 

2 11 33 11 22 22 33 23 32 12 21 13 31D b b b b b b b b b b b b= + + − − −   
  3 11 23 32 12 21 33 11 22 33 12 23 31 13 21 32D b b b b b b b b b b b b b b b= + − − −  
For  u ap≥ , we have: 
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2 2 20

0 0 1 3 3 211 ( 3 3 )rb Q rT u N a p
I

α α α = + − −  ;   
2

20
03 212 6rb T N uap

I
α= − ;   13 0b =       

 

         
0321

1 3b T au
m

α= − ;   22
3 022 3

1b T N a p
m
α= − ;   23

Eab
pm

= −              

         31 0b = ;    32 0b = ;    33
Ab

pm
= −  

where 2 2
0 33( )h u u N= − ; 2

0 1 33u α α= ; 2 (2 1) (2 3)N r r= + + ; 3 (2 3) (2 5)N r r= + +  and 

( )u
r

dQ M
du

= . 

In the case of u ap< ,  the coefficients  11b , 12b , 21b , 22b  take the form: 

                 

2 2 20 0 0
0 0 1 3 3 211 2 2 2

2( 3 3 )
π

r rTb Q rT u N a p
I a p u

α α α
 

= + + + − 
−  

 

2
20 0

2 312 2 2 2

2 13
π

r T ub N ap
I a a p u

α
 

= − + 
−  

 

                                       
0

3 221 2 2 2 2

23
π

T uab
m a p a p u

α
 

= − − 
−  

 

220
3

2

22 3 2 2 2 2 2

2
π

T ub N a p
m a p a p u

α
 

= − + 
−    

 
Calculations. In order to obtain information about the effect of the delay on the 

oscillation modes, calculations were carried out with the parameters: 0
11cω −= ,  

2 11kgf с сm ,m −= ⋅ ⋅  10.07 kgf сm ,b −= ⋅  1
0 0.05kgf сm ,c −= ⋅  0

10.02 kgf с сm ,k −= ⋅ ⋅
10.05kgf сm ,cτ
−= ⋅  10.06 kgf с сmkη

−= ⋅ ⋅ , 0 0.5 kgf=T ,  1
1 0.84 c сmα −= ⋅ ,  3 3

3 0.18 c сm ,α −= ⋅   

0 1сm=r , 21 kgf с сm= ⋅ ⋅I . For the delays pη and pτ, the values from the interval (0,2π) 
were used, and in the linearization coefficients 

2 3 5N = , 3 3 4N = . 
The amplitude-frequency curves a(p) in Fig.2-4 were obtained at a speed  u=1.2.  

The horizontal portions of the curves in Fig.4 reflect the dependence of   ap ≈ u.  
Curve 1 in all figures corresponds to the absence of delays ( 0kη = , η = 0, τ = 0) and 
is shown for comparison. Oscillations with amplitudes are stable within the shaded 
and black-filled sectors for the steepness of the  0( )u rdQ Mdu=  characteristic of the 
power source. These sectors should be shown on the   S(u) load curve, but are shown 
on the amplitude curves for brevity. In the parts of the sectors filled with black, there 
is a rather weak stability, i.e. criteria (criterion) of stability (10) are fulfilled in the 
form 0.000Х 0> , where Х ≤ 9.  
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Fig.2. Amplitude-frequency curves at   η = 0: 
    curve  1 – τ = 0, curve  2 – τ = π/2 

 
 

 
 

Fig.3. Amplitude-frequency curves at  η = π/2: 
   curve  2 – τ = π/2,  curve  3 – τ = π 

 
 

 
 

Fig.4. Amplitude-frequency curves at   η = π: 
curve  2 – τ = π/2,  curve  3 – τ = π,  curve  4 – τ = 3π/2 
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Conclusion. Containing the linearization accuracy parameter, the method direct 
linearization allows you to easily obtain solutions to a nonlinear system of differential 
equations and derive relationships for calculating the values of the amplitude and 
phase of oscillations, as well as the speed of the energy source. The calculations 
performed show that the combined action of various combinations of elasticity 
retardation and damping can strongly influence resonant oscillations. Under such 
action, the resonant region can shift in frequency. Depending on various 
combinations of lag values, the amplitude of the oscillations increase/decrease, the 
stability of the oscillations increase/decrease. 
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