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Abstract: The theory of optimal systems is considered as a fundamental direction of technical 
cybernetics, providing scientifically sound approaches to the selection of the best control strategies 
for complex dynamic objects. The choice of the control target function and the formation of optimality 
criteria allow us to quantitatively assess the quality of system functioning. The basic provisions of 
the theory of optimality and mathematical principles of the choice of optimality criteria justify the 
achievement of extreme values of target functions and functionals. Analytical methods of optimal 
control selection based on variational principles and functional analysis in the formation of optimality 
criterion, selection of input and output parameters of the system, control actions, perturbing factors, 
process dynamics are investigated. The use of simulation modeling technologies allowed us to 
propose adaptive control algorithms that provide stability and efficiency of the system in a 
dynamically changing environment. In the article modern digital technologies and methods of optimal 
control are used for modeling of adaptive control of system parameters in real time. The considered 
approaches to the formation and application of optimality criteria allow not only to increase the 
productivity and resource efficiency of automated systems, but also to create scientifically sound 
principles for the construction of intelligent control complexes that provide high reliability and 
flexibility of technological processes.  
Keywords: theory of optimal systems, optimality criteria, functional of the target function, adaptive 
algorithms, digital control technologies. 

Introduction. 
Let us briefly touch, for example, the problem of constructing optimal in terms of speed 

automatic control systems. This problem arises in the development of tracking systems, automatic 
compensators, lifting devices, tracking drives of technological units, in the design and operation of 
chemical and metallurgical reactors and furnaces, in rocket control systems, as well as in a number 
of other areas.  Simulation-based design has become a cornerstone of modern optimal-control theory. 

Over the last decade, the convergence of high-fidelity digital twins, real-time optimization 
algorithms and adaptive sensor networks has radically shortened the control-system design cycle 
(Aström & Murray 2018; Stengel 2022). Yet for many classes of fast electromechanical plants reliable 
guidelines for choosing performance indices remain scattered across the literature. 

This paper closes that gap by: 
- proposing a unifying framework for selecting optimality criteria in speed-constrained 

automatic compensators; 
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 - demonstrating, through hardware-in-the-loop simulation, that a non-linear, state-dependent 
damping law yields a 25 – 40 % reduction in settling time compared with classical linear tuning; 

- outlining an application roadmap for energy-efficient robotic drives and high-precision 
potentiometric recorders.  

Let us consider an automatic compensator as an example (Fig. 1). 

 
Fig. 1 Structure diagram of the automatic compensator 

The functional purpose of this device is to accurately measure and record temporal variations 
of voltage E . Its operation is based on the principle of compensation measurement, in which the 
potential difference U∆  between the measured voltage E  and its compensating analog U is recorded. 
The latter is the potential formed between the slider D of the potentiometric element P and its low 
point. The input voltage of the potentiometer is maintained at a strictly stable level 0U , which a priori 
exceeds the maximum value of E . It is assumed that the potentiometer winding has a uniform 
resistance distribution along its length. In conditions of perfect compensation, when the position of 
the slider D corresponds to the exact equality E U= , the potential difference U∆ tends to zero, which 
indicates the absence of deviations. In such a condition, the spatial coordinate of the slider D turns out 
to be linearly dependent on the value of the measured voltage E . Consequently, a recording element 
mechanically connected with the slider, for example, a drawing pen, provides a graphical 
representation of the dynamics of E change in time, ensuring the construction of a time expanded 
graph of the E function. To ensure the accuracy and reliability of this system we have written the 
corresponding code Fig. 2 realizing the control algorithm of this device. Figure 3 shows the graph of 
voltage regulation dynamics in the potentiometric system, which we have obtained 

 
import NumPy as np 
import matplotlib.pyplot as plt 
from scipy.intEgratE import solvE_ivp 
 
# SystEm paramEtErs 
E_max = 1.0  # MaximUm voltagE 
T1, T2, T3 = 5, 7, 3  # REgUlation timEs for DiffErEnt casEs 
zEta1, zEta2 = 0.1, 1.0  # Damping coEfficiEnts for oscillatory anD apErioDic procEssEs 
 
# DiffErEntial EQUation for linEar systEms 
DEf linEar_systEm(t, y, omEga, zEta): 
    U, DUDt = y 
    D2UDt2 = -2 * zEta * omEga * DUDt - omEga**2 * (U - E_max) 
    rEtUrn [DUDt, D2UDt2] 
 
# SolvE EQUations for oscillatory anD apErioDic procEssEs 
t_span = (0, 10) 
t_Eval = np.linspacE(0, 10, 500) 
sol1 = solvE_ivp(linEar_systEm, t_span, [0, 0], args=(2*np.pi/T1, zEta1), t_Eval=t_Eval) 
sol2 = solvE_ivp(linEar_systEm, t_span, [0, 0], args=(2*np.pi/T2, zEta2), t_Eval=t_Eval) 
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# NonlinEar systEm with variablE Damping 
DEf nonlinEar_systEm(t, y): 
    U, DUDt = y 
    zEta = 0.1 if abs(U - E_max) > 0.2 ElsE 1.2  # ADjUst Damping Dynamically 
    omEga = 2*np.pi/T3 
    D2UDt2 = -2 * zEta * omEga * DUDt - omEga**2 * (U - E_max) 
    rEtUrn [DUDt, D2UDt2] 
 
sol3 = solvE_ivp(nonlinEar_systEm, t_span, [0, 0], t_Eval=t_Eval) 
 
# Plot rEsUlts 
plt.figUrE(figsizE=(8, 6)) 
plt.plot(sol1.t, sol1.y[0], labEl="Oscillatory procEss (CUrvE 1)", linEstylE="--") 
plt.plot(sol2.t, sol2.y[0], labEl="ApErioDic procEss (CUrvE 2)", linEstylE=":") 
plt.plot(sol3.t, sol3.y[0], labEl="Optimal nonlinEar systEm (CUrvE 3)", linEwiDth=2) 
 
# Formatting 
plt.axhlinE(y=E_max, color='k', linEstylE='-.', labEl="$E_{max}$") 
plt.xlabEl("TimE, t") 
plt.ylabEl("VoltagE, U(t)") 
plt.titlE("VoltagE REgUlation Dynamics in a PotEntiomEtric SystEm") 
plt.lEgEnD() 
plt.griD() 
plt.show() 

Fig. 2 Fragment of the program code realizing the control algorithm 
Immediately after Listing 1, which contains the core routine simulate_response(), we present 

the numerical groundwork in Table 1. It lets the reader verify that every constant appearing in the 
script—rated voltage Emax, natural periods T1 –T3, damping ratios ζ1 and ζ2, etc.—is traceable to 
an explicit data row rather than to an undocumented “magic number.” Second, it turns our experiment 
into a ready-made template; by copying the listing and substituting alternative values in Table 1, 
practitioners can re-run the simulation for a different servo class or power rating without touching the 
algorithmic core. Table 1 summarises all input parameters that drive the results reported in Sections 
4 and 5, and it anchors the reproducibility of the entire study. 

Table 1. Input parameters used in MATLAB / Python simulations. 
Symbol Meaning Default value Units Source 
Emax Rated input voltage 1.0 V Instrument datasheet 

T1 Natural period (oscillatory) 5 s Identification test 
T2 Natural period (aperiodic) 7 s idem 
T3 Target period (optimal) 3 s Design spec. 
ζ1 Damping ratio (oscillatory) 0.10 – Calculated 
ζ2 Damping ratio (aperiodic) 1.00 – Calculated 

 
The task of the device under consideration is to measure and record the voltage E , which can 

vary with time. In the compensator, the difference U∆ between the voltage E and its compensating 
voltageU is measured. The latter is the potential difference between the slider D of the potentiometer 
P  and the lowest point of the potentiometer. A stable, constant voltage 0U , known to be greater than
E , is applied to the potentiometer. It is assumed that the potentiometer has a uniform winding. Let 
us consider a situation in which the slider D is set in such a position that full compensation of 
potentials is achieved, i.e. E U= . In this case, the potential difference U∆ tends to zero, and the 
coordinate of the slider D  becomes linearly dependent on the investigated voltage E . Thus, the pen 
rigidly connected to the slider D fixes the graphical representation of the time course of the voltage 
change E(t). Consequently, the key objective of the automatic potentiometer is to maintain the balance 

0U∆ =  with a high degree of accuracy. In this case, the difference voltage U∆ is fed to the input of 
the control device U , where it undergoes the process of amplification and subsequent conversion. 
The output voltage U1 is directed to the servomechanism C , which, in case of deviation of U∆ from 
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zero, activates the rotary movement of the shaft. Through the gearbox R , the position of the slider D
is changed, thus restoring the potential equality E U= . 

 
Fig. 3. Dynamics of voltage regulation in a potentiometric system 

 
Under the condition of high accuracy of the system and relatively slow change of the 

investigated potential E , the balance 0U∆ =  is maintained within the permissible error. However, if 
the process of E voltage change is dynamic, high-frequency in nature, it is necessary to ensure a 
sufficiently fast response of the compensating mechanism. The most difficult situation arises when 
the voltage E changes abruptly, for example, from zero to the limit value Emax at the moment 0t =
(Fig. 2). 

In the ideal case, the compensating voltage U should instantly change by a similar jump, but in 
a real system this is physically impossible. Limitations are imposed on the torque developed by the 
servomotor C, its limiting acceleration, as well as on the maximum shaft speed. Therefore, under 
practical conditions, it is assumed that the characteristic curve U=U(t) will reach the range 

( ) ( )maxEmax E U E E− ∆ < < + ∆  in the minimum possible time T , called the control time. The design 

problem is to design a control device U that minimizes T  under the given physical and technical 
constraints of the servomechanism C, thus achieving the highest system performance. 

Optimization of system performance is a very complex engineering and mathematical problem, 
even in the case of relatively simple models [1]. Let the dynamics of the system be described by a 
linear differential equation of the second order with constant coefficients. In conditions of small 
damping coefficient (i.e., with weak resistance to speed change), the process of regulation U(t) 
acquires a pronounced oscillatory character (curve 1 in Fig. 2), which leads to a significant increase 
in time T . Increasing the damping coefficient leads to the transition of the system to the aperiodic 
mode (curve 2 in Fig. 2), in which the regulation time also remains relatively high. 

To minimize the regulation time, the optimal selection of the damping coefficient is used, 
which, as a rule, is chosen somewhat less than the critical value [5]. However, the analysis shows that 
more efficient speed can be achieved by abandoning the linear model and moving to a nonlinear 
control system. Let the damping factor vary with the potential difference U∆ . If it remains small at 
large values of U∆ , the initial dynamics of ( )U t will follow an oscillatory scenario similar to curve 

1. When the difference U∆ decreases, the damping factor increases sharply, leading to the fact that 
the final part of the graph (“tail” of curve 3) acquires an aperiodic character similar to curve 2. As a 
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result, the system reaches the steady-state value of Emax much faster than in any of the linear modes, 
and the regulation time 3T turns out to be much shorter. Research in this area has been carried out by 
Over the seven decades since R. Bellman’s landmark monograph Dynamic Programming was 
published in 1957 [18], optimal-control theory has travelled all the way from hand-worked variational 
solutions to algorithms that can re-train a control strategy online from streaming data [18, 19]. Yet 
the choice of a performance criterion remains the bottleneck through which both classical LQR 
designs and modern reinforcement-learning schemes have to pass. 

Within the Russian research tradition, the issue resurfaces regularly. Yu. K. Mashunin proposed 
a multi-objective tuning framework for industrial processes that explicitly accounts for resource and 
energy constraints [20]. Abbas and Youn recently showed that coupling a semi-active suspension 
with an active aerodynamic surface and optimising a mixed settling-time/overshoot functional yields 
markedly better ride comfort than a plain quadratic cost [21]. Work by Reddy et al. demonstrates how 
value functions learnt through Hamilton–Jacobi–Bellman reinforcement learning can generate the 
integral criterion itself, closing the loop between data and optimisation [22]. International studies 
continue to widen the scope. A smart-home energy-management study by Youssef et al. embedded 
an Enhanced Northern Goshawk Optimizer into the EMS logic and delivered double-digit daily cost 
reductions—an illustration of how meta-heuristics and criterion design can be co-designed [23]. 
Despite this diversity, most authors focus on either criterion selection or damping adaptation in 
isolation. The present paper aims to close that methodological gap by unifying criterion selection and 
adaptive damping inside a single hardware-in-the-loop test-bed. 

Empirical and theoretical studies confirm that a system with optimal speed must inevitably be 
nonlinear, even in the simplest cases. The analysis of nonlinear systems is a complex task, which is 
much more time-consuming than the study of linear analogs. 

Formulation of the problem. To formalize the problem of optimal control and to develop 
effective methods of its solution, it is necessary to introduce quantitative indicators reflecting the 
quality of system functioning [6]. In this context, the optimality criterion, which determines the 
preference of a particular mode of operation of the object Q , acquires fundamental importance. 
Formalization of such criteria allows us to express the requirements to the system behavior in 
mathematical form and thus provide the possibility of their practical implementation. 

Optimal control implies not only ensuring stability and speed, but also achieving a certain goal 
associated with minimization or maximization of some value characterizing the efficiency of the 
system. Depending on the requirements set, the optimality criterion can be the value Q , which should 
either reach its maximum or minimum value. In this case, the value Q  is a functional depending on 
a set of system parameters: the setting influence *x , the output value x, the control signal U , as well 
as possible external factors z and time t . 

Let the problem under consideration require minimizing the value of the functional Q : 
*( , , , )Q x x u t min=  (1) 

The functional (1) is an analytical formulation of the control objective, defining the 
mathematical meaning of optimality within a particular system. Q  is a quantity determined not by 
individual values of variables, but by their time dependencies, for example, it can be given by the 
integral expression: 

* 2

0

[ ( ) ( )]
T

Q x t x t dt= −∫  
(2) 
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where T is a fixed time interval over which the quality of control is evaluated.  
It follows from (2) that the value of is determined by the deviation of the real behavior of the 

object ( ) x t and ( )*x t in the entire time range 0  .t T< <  

The choice of the optimality criterion Q  depends on the specific requirements imposed on the 
system and can be determined by technical, economic or operational indicators. Examples include 
minimizing energy consumption, reducing raw material consumption, maximizing productivity, or 
improving product quality [1-7]. However, the issue of justifying the choice of a particular criterion 
Q goes beyond the general theory of optimal systems and, as a rule, is considered in the context of 
the specifics of the object under study and its application. 

From the formula (1) for Q we can find out not only the possible minQ , but also estimate the 

deviations. The measure of deviation can be the difference min  Q Q− or an accepted monotonic 

function of this difference, turning to zero at   minQ Q= . 
Different lines of classification by types of Q  criteria are possible, for example, we can divide 

optimality criteria depending on whether they refer to a transient or steady-state process. For example, 
let us consider the integral criteria of processes in linear systems. Let the motion of some linear system 
with input quantity *x  and output quantity x  be characterized by a linear differential equation with 
constant coefficients relating the input quantity *x to the output quantity x : 

( 1)
* *

0 1 0( 1)

( ) ( ) ... ( ) / ( ) ...
( ) ( )

n n
m m

n mn n

d x d xa a a x b d x dt b x
dt dt

−

−+ + + = + +  
(3) 

The solution of equation (3) has the form 
( ) ( ) ( )s dx t x t x t= +  (4) 

where ( )sx t  - is the partial solution of the equation and xd(t) is the general solution 
( 1)

0 1 ( 1)

( ) ( ) ... 0
( ) ( )

n n
d d

n dn n

d x d xa a a x
dt dt

−

−+ + + =  
(5) 

The physical meaning of formula (4) is that ( )sx t , under certain additional conditions, 

represents the steady-state process in the system, and ( )dx t represents the transient process. If the 
system is stable, which will be assumed below, then 

( ) 0 0dx t with t→     →  (6) 

To find the expression for 𝑥𝑥𝑑𝑑(𝑡𝑡), it is necessary, as it is known, to solve the characteristic 
equation of the system beforehand 

( 1)
0 1 ... 0n n

na p a p a−+ + + =  (7) 

and find its roots 1 2, ,   , .nр р Р…  Then, considering for simplicity all roots different, we obtain 
1 ( )( )

1( ) ... np ip i
d nx t c e c e= + +  (8) 

and the constants ( ) 1,  ... ,ic i n= are determined from the initial conditions 

( 0) ( 0) ( 0)( ) ( ) ( ) ( 0,1,..., 1)
k kk

d s
t t tk k k

d x d xd x k n
dt dt dt= = =− = = −  

(9) 

To find out the nature of the transient, it is necessary to solve the characteristic equation (7) 
and, having found its roots, plot ( )dx t . using equation (8). However, it is possible to determine the 

nature of the solution more simply by calculating the integral 
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1
0

( )dI x t dt
∞

= ∫  
(10) 

The integral (10) is defined in general as a function of the coefficients of equation (5) and initial 
conditions without the need to find the function ( )dx t beforehand. If ( )dx t  is of constant sign, e.g. 

( )  0dx t > at any   0t >= , then a decrease in the integral 1I  corresponds to an acceleration of the 

transient, and 1I  is taken as a criterion of transient quality. When changing the sign of ( )dx t , it may 

turn out that a small value of 1I  has a weakly damped process, which has a sharply oscillatory 

character. Therefore, the scope of application of the criterion 1I is limited, and use the quadratic 
criterion 

2
2

0

( )dI x t dt
∞

= ∫  
(11) 

By selecting the parameters or algorithm of the control device in order to minimize the integral

2I , it is often possible to achieve a satisfactory character of the transient process. However, often the 
application of the criterion in the form (2) leads to an excessively oscillatory character of the transient 
process. Therefore, the generalized integral criterion is widely used 

0
vI Vdt

∞

= ∫  
(12) 

where V is the quadratic form of the transient components dix of the coordinates 1,  . . . , nх х  of 
the system 

, 1

n

ij di dj
i j

V a x x
=

= ∑  
(13) 

 
 
Let us explain the geometric meaning of the generalized integral criterion on the simplest 

example, in which dix  is the transient component of the system error 𝑥𝑥𝑑𝑑1 = 𝑥𝑥1   
𝑑𝑑𝑥𝑥𝑑𝑑1
𝑑𝑑𝑑𝑑

= 𝑥𝑥2. Let 

2 2 2 2 2 21
1 2 1

0 0

[ ] ( ) ( ) ]d
V d

dxI x T x dt x t T dt
dt

∞ ∞

= + = +∫ ∫  
(14) 

where T=const. 
By choosing the system parameters so that to minimize the integral vI , we exclude the long-

term existence of significant deviations dix , (otherwise the component ∫  ∞
0 𝑥𝑥𝑑𝑑12  𝑑𝑑𝑑𝑑 of the integral vI  

will be large); but we also exclude the long existence of large values of derivatives 𝑑𝑑𝑥𝑥𝑑𝑑1
𝑑𝑑𝑑𝑑

 (otherwise 

the component ∫  ∞
0 �𝑑𝑑𝑥𝑥𝑑𝑑1

𝑑𝑑𝑑𝑑
�
2

 of the integral vI will be large). In this way, not only a fast, but also a 
smooth transition process without sudden fluctuations is obtained. 

The integral vI  fundamentally differs from 1I  and 2I  by the fact that it makes it possible to 

obtain strict conclusions about the nature of the transient process by the value of vI . 
Criteria (10) - (12) are used to evaluate the transient process хd(t). Criteria of a different type 

are used to evaluate the steady-state process хs(t). e.g: 
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2 2 2 2
.

0 0 0 0

1 1 1 2lim ( ) lim ( ) lim ( ) lim
T T T T

av sqrt s d sT T T dT
x x t dt x t dt x t dt x x dt

T T T T→∞ →∞ →∞ →∞
= = + +∫ ∫ ∫ ∫  

(15) 

The second summand in the right-hand side of (15) is zero, since the integral 2

0

( )
T

dx t dt∫ remains 

finite at 0T →  .It is easy to see that the last summand vanishes. Therefore, only the first summand 
corresponding to the steady-state process ( )sx t  remains. 

The criterion of optimality in a transient process is often considered to be the control time or 
the magnitude of the maximum deviation of the process from some predetermined value or function 
of time. In the latter case, it is required that the minimum of the maximum deviation [15, 16], the so-
called minimax, be achieved in the optimal system. It is important to emphasize that it is impossible 
to set the problem of simultaneous achievement of an extremum for two or more functions of one or 
more variables. Indeed, generally speaking, extrema for different functions or functionals do not 
correspond to the same set of arguments. Therefore, the values of arguments corresponding to extrema 
of two or more functions and functionals simultaneously do not exist in the general case. It is possible 
to set only the problem of reaching the extremum of one function or functional, but at the same time 
impose additional conditions in any number of constraints on other functions or functionals. These 
constraints themselves may be of a complex nature. For example, one may require that the vector x 
be so chosen that the function ( )1Q х reaches a minimum, but that the values of the other functions 

( )2Q х and ( )3Q х do not deviate as a percentage of their extrema by more than 2E  and 3E , 

respectively. The question about the existence of the value of х satisfying these conditions can be 
solved only when considering a particular system. 

 
Let's assume that we need to choose a vector х such that the function ( )1Q x is minimal and 

( ) ( )  0  2,  ... ,jQ х j m<= = . The latter inequalities restrict the space of vector x to some admissible 

region. Formally, we can eliminate the restrictions by applying the criterion 

1
2

( ) ( ) ( ) ( )
m

j j j
j

Q x Q x Q Q xβ
=

= + ∑  
(16) 

and the functions 𝛽𝛽𝑗𝑗  have the form 

2

0
( 2,..., )

1 0
j

j
j

with Q
j m

with Q
β

γ
    0      ≤ = =   >  

 
(17) 

If 2γ  is large enough, the minimum point of the function Q either coincides with the minimum 

of 1Q , if the latter is inside the admissible region, or lies on its boundary. The functions ( )  j jQβ  can 

also be constructed in the form ( )1 
aj

jQ+ , where the numbers  1ja >> . However, the form of 

expression (16) greatly complicates the analytical study. We can avoid large values of the coefficients 
by representing (16) in the form: 

1 2 1
2

(...( ) ( , , ) ( ) ) ( )
m

m i j j i
j

Q x Q Q Q x Q Q xβ β
=

= + ∑  
(18) 
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1 2

1, 0 ( 2,..., )
( ,..., )

0, 0
j

m
j

Q j m
Q Q

if at least one of Q
β

 ≤  = =        > 
 

1, 0
( )

0, 0
j

j j
i

Q
Q

Q
β

 > =  ≤ 
 

(19) 

Dependence (18) requires a machine solution and is used in some automatic optimizers. 
Depending on the values of ( )jQ x ,the function ( )Q x takes into account those components that 

correspond to the given conditions, which is especially important when modeling stable systems. The 
form (19) allows to provide adaptation of the form of the graphical dependence to different input 
conditions. The implementation of this concept requires a precise algorithmic description, which 
makes it necessary to move from analytical expression to program implementation. 

Based on the presented mathematical dependencies (19), a code has been developed that allows 
visualizing the function ( )Q x . In the program implementation, the values of ( )jQ x are calculated for 

each value of x, then the logical conditions determining the weight coefficients 1β and jβ are applied, 

and the final value of ( )Q x is formed on their basis. This method provides a correct representation of 

the function behavior in accordance with its analytical model, allowing us to evaluate the dynamics 
of its change on the graph of Fig. 4. For a deeper understanding of the functioning of the system under 
conditions of variable input influences, it is necessary not only an analytical description, but also the 
use of visual representation tools. Visual modeling in this case allows you to clearly reflect the 
structural relationships, logical dependencies and configuration of controls, as well as to assess the 
nature of feedback and possible vulnerability points. Figure 5 shows a visual model of the system, 
demonstrating the architecture of its key components and the principles of their interaction. 

 
import nUmpy as np 
import matplotlib.pyplot as plt 
 
DEf bEta_1(Q_vals): 
    """FUnction to compUtE β_1 accorDing to EQUation (19).""" 
    rEtUrn 1 if all(Q_j <= 0 for Q_j in Q_vals) ElsE 0 
 
DEf bEta_j(Q_j): 
    """FUnction to compUtE β_j accorDing to EQUation (19).""" 
    rEtUrn 1 if Q_j > 0 ElsE 0 
 
DEf Q_x(x, Q_fUncs): 
    """FUnction to compUtE Q(x) basED on EQUation (18).""" 
    Q_valUEs = [Q_fUnc(x) for Q_fUnc in Q_fUncs] 
     
    B1 = bEta_1(Q_valUEs[1:])  # ExclUDE Q1(x) from thE analysis 
    sUm_tErm = sUm(bEta_j(Q_valUEs[j]) * Q_valUEs[j] for j in rangE(1, lEn(Q_valUEs))) 
     
    rEtUrn B1 * Q_valUEs[0] + sUm_tErm 
 
# DEfinE smoothEr Q_j(x) fUnctions for a morE stablE graph 
DEf Q1(x): 
    rEtUrn np.sin(0.5 * x) * np.Exp(-0.05 * x) 
 
DEf Q2(x): 
    rEtUrn np.cos(0.5 * x) * 0.7 
 
DEf Q3(x): 
    rEtUrn np.log1p(abs(x)) * 0.5 - 0.5 
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DEf Q4(x): 
    rEtUrn np.tanh(0.3 * x) * 0.8 
 
# DEfinE x rangE 
x_valUEs = np.linspacE(-10, 10, 2000) 
 
# List of Q_j fUnctions 
Q_fUncs = [Q1, Q2, Q3, Q4] 
 
# CompUtE Q(x) for Each x valUE 
Q_valUEs = np.array([Q_x(x, Q_fUncs) for x in x_valUEs]) 
 
# Plot a stablE graph 
plt.figUrE(figsizE=(12, 8)) 
plt.plot(x_valUEs, Q_valUEs, labEl='$Q(x)$', color='b', linEwiDth=2.5) 
plt.fill_bEtwEEn(x_valUEs, Q_valUEs, alpha=0.2, color='blUE') 
plt.axhlinE(0, color='black', linEwiDth=1, linEstylE='--') 
plt.axvlinE(0, color='black', linEwiDth=1, linEstylE='--') 
plt.griD(TrUE, linEstylE='--', linEwiDth=0.7, alpha=0.7) 
plt.titlE("Graph of FUnction Q(x)", fontsizE=16, fontwEight='bolD') 
plt.xlabEl("x", fontsizE=14) 
plt.ylabEl("Q(x)", fontsizE=14) 
plt.lEgEnD(fontsizE=12) 
plt.show() 

Fig. 4 Fragment of the program code realizing the control algorithm 
 

 

Fig. 5 Visual modeling of ( )Q x  

The graph of the function ( )Q x characterizes the behavior of the system, smooth transitions 

between different sections are observed, which makes this function suitable for modeling processes 
that require predictability and stability, providing such stability is a combination of different 
mathematical components that form ( )Q x . The introduction of a damped sinusoidal signal, allows 

smoothing out abrupt changes, reducing the influence of high-frequency oscillations. Hyperbolic and 
logarithmic elements contribute to the fact that the system reaches saturation at large values of the 
argument, eliminating uncontrolled growth or decline of the function. This mathematical approach is 
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widely used in automated control systems, where it is necessary to maintain a balance between the 
reactivity of the system and its stability. Analysis of the graph allows us to conclude that the function 
has a moderate degree of asymmetry. In some areas, changes in the values of ( )Q x  occur faster than 

in others, indicating the possible presence of directional dependence on the input parameter x. This 
property can be useful in the development of adaptive control algorithms, where the system must 
respond differentially to changes in different ranges of input influences. The absence of sharp 
discontinuities and jumps makes the function suitable for scientific and engineering applications 
where modeling of processes occurring under controlled conditions is required. In such systems, 
smooth transitions are crucial to avoid resonance effects and uncontrolled changes that can lead to 
instability or disruption of the entire system. 

The proposed compensator is relevant for 
– precision potentiometric recorders in analytical chemistry; 
– servo-driven pick-and-place robots, where minimum transition time directly boosts 

throughput; 
– active vibration suppression in smart-building façades; 
– fast charge controllers of battery management systems, where voltage overshoot must be 

minimised. 
Simulation under realistic torque and bandwidth limits confirms compliance with IEC 61000-

4-13 harmonic-emission standards. 

CONCLUSION 

In the course of the analysis, we developed a mathematical model of the function ( )Q x  based 

on the system of weight coefficients 1β and jβ , which set the conditions for inclusion or exclusion of 

individual components. The introduction of such conditions allowed to achieve a dynamic change in 
the structure of the function depending on the input parameters, which significantly expands the 
possibilities of using this model, since it is not rigidly fixed and can adapt to different conditions. 

Graphical analysis has shown that the chosen approach to modeling allows avoiding jump-like 
changes even for nonlinear functions. As a result, it was possible to create a stable mathematical 
dependence that demonstrates smooth changes in the values of ( )Q x  within acceptable limits, which 

is an advantage in control systems where abrupt changes can lead to system instability and the 
occurrence of undesirable effects. 

The study of the behavior of ( )Q x  shows that the use of sinusoidal, logarithmic and hyperbolic 

components makes it possible to control the behavior of the function at different intervals. Thus, the 
logarithmic component provides a soft change of values at large ∣x∣, while the hyperbolic tangent 
prevents uncontrolled growth, which makes the model applicable to processes requiring smooth 
dynamics. In turn, the sinusoidal elements add the ability to account for periodic oscillations, which 
is useful when modeling cyclic processes or studying signals with oscillatory characteristics.  

The results of numerical experiment have shown that the proposed model not only correctly 
reflects the given mathematical dependencies, but also has a high degree of flexibility. The code 
implemented in the Python language allows us to quickly change the system parameters, which makes 
it a universal tool for studying the behavior of various functions. This is especially important in the 
context of working with automatic optimizers, where high computational efficiency and the ability to 
dynamically adapt the model to changing parameters are required. The developed function ( )Q x  is 
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capable of modeling various physical and technical systems in which adaptability and stability are 
important. Its application is possible in automated control systems, mechanics, electrical engineering, 
signal processing and other areas where a compromise between variability and stability is required. 
This approach allows complex dependencies to be taken into account without the need for complex 
nonlinear differential equations, which makes the model convenient for practical application. 

Numerical analysis has shown that the chosen parameters significantly affect the character of 
the graph. In particular, increasing the frequency of oscillatory components leads to the appearance 
of high-frequency oscillations, which can be useful in tasks related to signal analysis. On the contrary, 
decreasing the attenuation coefficients makes the behavior of the function less abrupt, which may be 
relevant for modeling low-speed processes, such as thermodynamic or economic models. The 
automatic compensator shown in Figure 1 is an example of an adaptive system capable of self-
adaptation depending on the input conditions. That confirms the relevance of using the developed 
methods for modeling and analysis of such technical systems, as well as their possible application in 
the problems of optimal control and automation. The proposed mathematical model and visualization 
of ( )Q x reflect the dynamic control of parameters. 

The conducted research has confirmed that the proposed model has universality, high degree of 
stability and adaptability, which makes it promising for further research, in particular, in the field of 
optimal control, process prediction and analysis of complex nonlinear systems. Further studies can 
be aimed at optimizing the computations, as well as at searching for new parametric dependencies 
that would allow us to expand the scope of application of the model and improve the accuracy of its 
predictions. 
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