

Pages 70 – 75

## DEVELOPMENT OF SOFTWARE FOR THE SELECTION OF PARAMETERS FOR STANDARD GRINDING CYCLES OF THE SIEMENS SINUMERIK 802D SL SYSTEM

## Leonid SHIPULIN<sup>1</sup>, Evgeniya OBUKHOVA<sup>2</sup>, Arnold FROLOV<sup>3</sup>

<sup>1,3</sup>South Ural State University, Chelyabinsk, Russia, <sup>2</sup>«PTC» LLC, Chelyabinsk, Russia

*E-mail:* <u>shipulinlv@susu.ru<sup>1</sup></u>, <u>oev@rts-eng.ru<sup>2</sup></u>, <u>arni-frolov@mail.ru<sup>3</sup></u>

**Abstract:** An overview of the standard cycles used in the preparation of control programs for cylindrical grinding machines with the Siemens SINUMERIK 802D sl CNC system, as well as the problems associated with the assignment of their parameters, is carried out. The developed software for assigning the parameters of standard cycles used in the preparation of control programs for cylindrical grinding machines with the Siemens SINUMERIK 802D sl CNC system is being carried out.

Keywords: cylindrical grinding, automatic cycles, parameters of grinding cycles.

**Introduction.** Features of the current stage of development of mechanical engineering is characterized by the proliferation of CNC grinding machines. The use of this type of equipment can significantly increase machining productivity and improve the quality of manufactured parts. The main feature of this equipment is that the movement of the tool relative to the workpiece is pre-programmed and recorded in the form of a control program written in G codes according to the ISO standard.

The control program is a sequence of frames. It is recommended to compose the control program in such a way that only the geometric, technological and auxiliary information that changes with respect to the previous frame is recorded in the frame. To increase the performance of CNC cylindrical grinding operations, cycles are used to adapt the machining cycle to specific technological conditions [1–8]. Cycles represent the specified trajectories of movement of the working bodies of the machine. Modern CNC systems have pre-programmed machining cycles. The use of typical cycles (libraries of subprograms) for machining workpiece elements in programming greatly simplifies the compilation of a control program, reduces labor intensity and reduces the possibility of programming errors.

There are several types of single machining cycles: typical, fixed and flexible. Typical cycles reflect available cycle design guidelines for a wide range of possible machining options. Permanent (automatic) cycles are small, hard programs that cannot be changed. Flexible cycles are made as subprograms that can be changed during programming. Permanent cycles and subprograms can be repeated anywhere in the program and thus greatly simplify the programming of machining parts with several identical elements.

According to the Siemens SINUMERIK 802D sl [9] programming and operating manual for cylindrical grinding machines with CNC systems, there is the following list of cycles, for which you must enter the parameters indicated in brackets:

- cone grinding CYCLE 405 (N\_SITZ, Z\_START, Z\_ENDE, X\_START, X\_ENDE, W\_BREITE, UBL, RAD, B\_ART, ZU\_ART, BVU1, BVU2, X\_A\_LU, X\_A\_SR, X\_A\_SL, X\_A\_FS, SRZ, SLZ, FSZ, N\_SR, N\_SL, N\_FS, D\_SR, D\_SL, D\_FS, ESL, EFS, FX\_SR, FX\_SL, FX\_FS, FZ\_SR, FZ\_SL, FZ\_FS, MZ, KS, F\_KS, UWERK) (see fig. 1, a);

– plunge-cut CYCLE 410 (N\_SITZ, X\_SOLL, Z\_ST, B\_ART, A\_LU, A\_SR, A\_SL, A\_FSA, F\_SR, F\_SL, F\_FSL, TIME, MZ, KS, F\_KS, OSW, F\_OSCILL, UWERK) (see fig. 1, b);

- repeated plunge-cut CYCLE 411 (N\_SITZ, X\_SOLL, Z\_ST, Z\_END, UBL, B\_ART, A\_LU, A\_SR, A\_SL, A\_FSL, SLZ, FSZ, ZU\_ART, BVU1, BVU2, F\_PE, F\_SR, F\_SL, F\_FSL, N\_FR, MZ, KS, F\_KS, UWERK) (see fig. 1, c);

-plunge-cut edge grinding CYCLE412 (N\_SITZ, Z\_SCH, X\_ST, B\_ART, A\_LU, A\_SR, A\_SL, F\_SR, F\_SL, TIME, KS, F\_KS, OSW, F\_OSCILL, UWERK) (see fig. 1, d);

– plunge-cut grinding with angle feed CYCLE413 (N\_SITZ, X\_SOLL, Z\_SCH, WIN, B\_ART, A\_LU, A\_SR, A\_SL, A\_FSL, F\_SR, F\_SL, F\_FSL, TIME, MZ, KS, F\_KS, UWERK) (see fig. 1, e);

- swing CYCLE415(N\_SITZ, X\_SOLL, Z\_ST, Z\_END, B\_ART, A\_LU, A\_SR, A\_SL, A\_FSL, SRZ, SLZ, FSLZ, ZU\_ART, BVU1, BVU2, F\_PE, FP\_SL, FP\_FS F\_SR, F\_SL, F\_FSL, N\_FR, MZ, KS, F\_KS, UWERK) (see fig. 1, f);

– fillet grinding CYCLE414 (N\_SITZ, Z\_SCH, X\_ST, RAD, LAGE, A\_LU, A\_SR, F\_SR, KS, F\_KS, UWERK) (see fig. 1, g).







## Leonid SHIPULIN, Evgeniya OBUKHOVA, Arnold FROLOV. Development of software for the selection of parameters for standard grinding cycles of the siemens sinumerik 802D sl system



Figure. 1. SINUMERIK 802D sl CNC cylindrical grinding machine cycles [7]: a) CYCLE 405; b) CYCLE 410; c) CYCLE 411; d) CYCLE412; e) CYCLE413; f) CYCLE415; g) CYCLE414.

When developing a control program using the above cycles, problems arise related to the assignment of cycle parameters (for example, for the swing cycle CY-CLE415, shown in Table 1), namely:

- a large number of strictly regulated parameters;
- lack of recommendations on the assignment of parameters;

| Parameter | Data type | Meaning                              |
|-----------|-----------|--------------------------------------|
| N_SITZ    | INT       | Support number                       |
| X_SOLL    | REAL      | Specified diameter (abc.)            |
| Z_ST      | REAL      | Start position in Z (abc.)           |
| Z_END     | REAL      | End position in Z (abc.)             |
| B_ART     | INT       | Machining mode:                      |
|           |           | 1= roughing                          |
|           |           | 2= finishing + tweaking              |
|           |           | 3=roughing + finishing + tweaking    |
| A_LU      | REAL      | Air gap (increment)                  |
| A_SR      | REAL      | Cut amount - Roughing (incr.)        |
| A_SF      | REAL      | Cut amount - Finishing (incr.)       |
| A_FSL     | REAL      | Cut amount - Tweaking (incr.)        |
| SRZ       | REAL      | Feed rate value in roughing (incr.)  |
| SLZ       | REAL      | Feed rate value in finishing (incr.) |
| FSLZ      | REAL      | Feed rate value in tweaking (incr.)  |

| Tuble 1. Description of swing cycle parameters of of the first | Table 1 | 1. Description | of swing c | cycle parameters | CYCLE415 [7 | 7 |
|----------------------------------------------------------------|---------|----------------|------------|------------------|-------------|---|
|----------------------------------------------------------------|---------|----------------|------------|------------------|-------------|---|

Leonid SHIPULIN, Evgeniya OBUKHOVA, Arnold FROLOV. Development of software for the selection of parameters for standard grinding cycles of the siemens sinumerik 802D sl system

| ZU_ART | INT  | Feed rate                                    |
|--------|------|----------------------------------------------|
|        |      | -1 = only from left                          |
|        |      | 0 = from both sides                          |
|        |      | 1 = only from right                          |
| BVU1   | INT  | Dwell time at point of return 1              |
| BVU2   | INT  | Dwell time at point of return 2              |
| F_PE   | REAL | Pendulum roughing feed                       |
| FP_SL  | REAL | Pendulum finishing feed                      |
| FP_FS  | REAL | Pendulum tweaking feed                       |
| F_SR   | REAL | Feed in roughing                             |
| F_SL   | REAL | Feed in tweaking                             |
| F_FSL  | REAL | The number of moves to exit                  |
| N_FR   | INT  | Active control J=1 / N=0                     |
| MZ     | INT  | Structure-borne noise J=1 / N=0              |
| KS     | INT  | Feed for grinding wheel idle passes [mm/min] |
| F_KS   | REAL | Peripheral speed of workpiece [m/min]        |

To solve these problems, it is proposed to develop software that makes it easier for the technologist-programmer to choose the parameters of the cycles, which ultimately will greatly simplify the compilation of the control program. The Microsoft Excel program was considered as a software implementation tool. The functions of the program allow you to carry out almost any manipulation of numbers. The spreadsheet is the main tool that is used to process and analyze digital information using computer technology.

The peculiarity of Microsoft Excel lies in the fact that in the process of calculating, you can simultaneously operate with data that is located in different zones of the spreadsheet and at the same time are connected with a certain dependency. Such calculations are carried out due to the possibility of introducing various formulas into the cells of the table. After performing the calculation, the result will be displayed in the cell with the formula. An important feature of using a spreadsheet is the automatic recalculation of results if cell values change.

In the Microsoft Excel software environment, eight sheets were created, seven of which correspond to each of the considered cycles and one sheet contains reference information. In fig. 2 shows an example of an Excel sheet with recommendations for assigning parameters for a

canned cycle for radius grinding CYCLE414.

The worksheet (see fig. 2) is divided into 2 zones:

- zone "Initial data", here the user specifies all the necessary data for assigning parameters, such as length, required diameter, etc., depending on the type of cycle;

– parameter assignment zone. Most of the cells are filled in automatically using the original data. However, to fill in some cells it is necessary to perform a number of actions: follow the hyperlink to the sheet with reference information from the reference book of the Chelyabinsk Research Institute of Abrasives and Grinding [9], select the required variable and write in the indicated place. Finally, all data is automatically copied into one record, resulting in a cycle record that can be used on the machine.

| A                                      | В                                                                  | С                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | E                                                  | F   | G  |
|----------------------------------------|--------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|-----|----|
|                                        | INITIA                                                             | ΠΑΤΑ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | _                                                  |     | -  |
| 1                                      | INTIA                                                              | JDAIA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                    |     |    |
| 2                                      | - · · ·                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                    |     |    |
| 3                                      |                                                                    | X I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Y I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                    |     |    |
| 5                                      |                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                    |     |    |
| 6                                      |                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                    |     |    |
| 7                                      |                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                    |     |    |
| 8                                      |                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                    |     |    |
| 9                                      |                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                    |     |    |
| 10                                     |                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | l nº l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                    |     |    |
| 12                                     |                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <i>\</i> € <sup></sup> ∕                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                    |     |    |
| 13                                     |                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                    |     |    |
| 14                                     |                                                                    | 81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                    |     |    |
|                                        |                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                    |     |    |
|                                        |                                                                    | ρ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Ζ                                                  |     |    |
|                                        | 0 10                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                    |     |    |
|                                        | Condition                                                          | $al \checkmark$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                    |     |    |
|                                        | face                                                               | 0 1 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0 1 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                    |     |    |
| 15                                     | mmher                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                    |     |    |
| 16                                     | manoer                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                    |     |    |
| 17                                     |                                                                    | Designation in the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | e figure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Value                                              |     |    |
| 18                                     | Conditional fact                                                   | number                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1                                                  |     |    |
| 19                                     | T                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                    |     |    |
| 20                                     | L                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 22                                                 |     |    |
| 21                                     | D                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 200                                                |     |    |
| 22                                     | R1                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                    |     |    |
| 22                                     | P1                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10                                                 |     |    |
| 25                                     | K2                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                    |     |    |
| 24                                     | Value of cut am                                                    | Junt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0,2                                                |     |    |
| 26                                     | Using a structur                                                   | e-bome noise recorder                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | yes                                                |     |    |
| 27                                     | Processed mate                                                     | rial                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                    |     |    |
| 5/                                     |                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                    | -   |    |
| 38                                     | Parameter                                                          | Manning                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Percommendations                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Indicator                                          | (   |    |
|                                        | ratameter                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Recommendations                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | indicator                                          | r I |    |
| 39                                     | 1                                                                  | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4                                                  |     |    |
|                                        | N SITZ                                                             | The number of the step with the machined surface relative                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | According to the initial data                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1                                                  |     |    |
|                                        | _                                                                  | to the 0-part                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                    | k   |    |
|                                        |                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1                                                  |     |    |
| 40                                     |                                                                    | Dimension to the end along the Z axis: using this                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1                                                  |     |    |
|                                        | 7 SCH                                                              | parameter, the value of the width of the technological                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | According to the initial data                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 55                                                 |     |    |
|                                        | 2_50m                                                              | section of the part is entered, the dimension between the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | According to the initial data                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                    | 1   |    |
|                                        |                                                                    | zero of the part to the machined end, mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1                                                  | 1   |    |
| 41                                     |                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1                                                  | 1   |    |
| -7.8                                   |                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                    | ·   |    |
| 40                                     |                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                    | 1   |    |
| 42                                     |                                                                    | Start position at X, i.e. coordinate along the 0X axis,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                    | 1   |    |
|                                        | X_ST                                                               | Start position at X, i.e. coordinate along the 0X axis,<br>corresponding to the initial position of the grinding wheel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | According to the initial data                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 200                                                |     |    |
| 43                                     | X_ST                                                               | Start position at X, i.e. coordinate along the 0X axis,<br>corresponding to the initial position of the grinding wheel<br>in the direction of the 0X axis, relative to the 0-part                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | According to the initial data                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 200                                                |     |    |
|                                        | X_ST                                                               | Start position at X, i.e. coordinate along the 0X axis,<br>corresponding to the initial position of the grinding wheel<br>in the direction of the 0X axis, relative to the 0-part                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | According to the initial data                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 200                                                |     |    |
|                                        | X_ST                                                               | Start position at X, i.e. coordinate along the 0X axis,<br>corresponding to the initial position of the grinding wheel<br>in the direction of the 0X axis, relative to the 0-part<br>Part radius i.e. the required value of the radius of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | According to the initial data According to the initial data                                                                                                                                                                                                                                                                                                                                                                                                                              | 200                                                |     |    |
| 44                                     | X_ST<br>RAD                                                        | Start position at X, i.e. coordinate along the 0X axis,<br>corresponding to the initial position of the grinding wheel<br>in the direction of the 0X axis, relative to the 0-part<br>Part radius i.e. the required value of the radius of the<br>technological section of the part is entered                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | According to the initial data According to the initial data                                                                                                                                                                                                                                                                                                                                                                                                                              | 200                                                |     |    |
| 44                                     | X_ST<br>RAD                                                        | Start position at X, i.e. coordinate along the 0X axis,<br>corresponding to the initial position of the grinding wheel<br>in the direction of the 0X axis, relative to the 0-part<br>Part radius i.e. the required value of the radius of the<br>technological section of the part is entered                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | According to the initial data According to the initial data                                                                                                                                                                                                                                                                                                                                                                                                                              | 200                                                |     |    |
| 44                                     | X_ST<br>RAD                                                        | Start position at X, i.e. coordinate along the 0X axis,<br>corresponding to the initial position of the grinding wheel<br>in the direction of the 0X axis, relative to the 0-part<br>Part radius i.e. the required value of the radius of the<br>technological section of the part is entered<br>The processed comer can be both internal and external.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | According to the initial data<br>According to the initial data<br>23 - inner comer, i.e. processing is performed clockwise;                                                                                                                                                                                                                                                                                                                                                              | 200                                                |     |    |
| 44                                     | X_ST<br>RAD<br>LAGE                                                | Start position at X, i.e. coordinate along the 0X axis,<br>corresponding to the initial position of the grinding wheel<br>in the direction of the 0X axis, relative to the 0-part<br>Part radius i.e. the required value of the radius of the<br>technological section of the part is entered<br>The processed corner can be both internal and external.<br>Depending on this, this parameter has the value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | According to the initial data<br>According to the initial data<br>23 - inner comer, i.e. processing is performed clockwise;<br>31 - outer comer, i.e. processing is performed counterclockwise;                                                                                                                                                                                                                                                                                          | 200<br>0<br>31                                     |     |    |
| 44                                     | X_ST<br>RAD<br>LAGE                                                | Start position at X, i.e. coordinate along the 0X axis,<br>corresponding to the initial position of the grinding wheel<br>in the direction of the 0X axis, relative to the 0-part<br>Part radius i.e. the required value of the radius of the<br>technological section of the part is entered<br>The processed corner can be both internal and external.<br>Depending on this, this parameter has the value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | According to the initial data<br>According to the initial data<br>23 - inner corner, i.e. processing is performed clockwise;<br>31 - outer corner, i.e. processing is performed counterclockwise;                                                                                                                                                                                                                                                                                        | 200<br>0<br>31                                     |     |    |
| 44                                     | X_ST<br>RAD<br>LAGE                                                | Start position at X, i.e. coordinate along the 0X axis,<br>corresponding to the initial position of the grinding wheel<br>in the direction of the 0X axis, relative to the 0-part<br>Part radius i.e. the required value of the radius of the<br>technological section of the part is entered<br>The processed comer can be both internal and external.<br>Depending on this, this parameter has the value<br>Cut amount for idle passes of the grinding wheel: safe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | According to the initial data<br>According to the initial data<br>23 - inner corner, i.e. processing is performed clockwise;<br>31 - outer corner, i.e. processing is performed counterclockwise;                                                                                                                                                                                                                                                                                        | 200<br>0<br>31                                     |     |    |
| 44                                     | X_ST<br>RAD<br>LAGE                                                | Start position at X, i.e. coordinate along the 0X axis,<br>corresponding to the initial position of the grinding wheel<br>in the direction of the 0X axis, relative to the 0-part<br>Part radius i.e. the required value of the radius of the<br>technological section of the part is entered<br>The processed comer can be both internal and external.<br>Depending on this, this parameter has the value<br>Cut amount for idle passes of the grinding wheel: safe<br>position of the tool during idle strokes, i.e. distance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | According to the initial data<br>According to the initial data<br>23 - inner corner, i.e. processing is performed clockwise;<br>31 - outer corner, i.e. processing is performed counterclockwise;<br>It is recommended to assign this parameter from 5 to 10 mm                                                                                                                                                                                                                          | 200<br>0<br>31                                     |     |    |
| 44                                     | X_ST<br>RAD<br>LAGE<br>A_LU                                        | Start position at X, i.e. coordinate along the 0X axis,<br>corresponding to the initial position of the grinding wheel<br>in the direction of the 0X axis, relative to the 0-part<br>Part radius i.e. the required value of the radius of the<br>technological section of the part is entered<br>The processed corner can be both internal and external.<br>Depending on this, this parameter has the value<br>Cut amount for idle passes of the grinding wheel: safe<br>position of the tool during idle strokes, i.e. distance<br>between the starting position of the grinding wheel and the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | According to the initial data<br>According to the initial data<br>23 - inner corner, i.e. processing is performed clockwise;<br>31 - outer corner, i.e. processing is performed counterclockwise;<br>It is recommended to assign this parameter from 5 to 10 mm                                                                                                                                                                                                                          | 200<br>0<br>31<br>5                                | -   |    |
| 44<br>45<br>46                         | X_ST<br>RAD<br>LAGE<br>A_LU                                        | Start position at X, i.e. coordinate along the 0X axis,<br>corresponding to the initial position of the grinding wheel<br>in the direction of the 0X axis, relative to the 0-part<br>Part radius i.e. the required value of the radius of the<br>technological section of the part is entered<br>The processed corner can be both internal and external.<br>Depending on this, this parameter has the value<br>Cut amount for idle passes of the grinding wheel: safe<br>position of the tool during idle strokes, i.e. distance<br>between the starting position of the grinding wheel and the<br>roughing allowance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | According to the initial data<br>According to the initial data<br>23 - inner corner, i.e. processing is performed clockwise;<br>31 - outer corner, i.e. processing is performed counterclockwise;<br>It is recommended to assign this parameter from 5 to 10 mm                                                                                                                                                                                                                          | 200<br>0<br>31<br>5                                |     |    |
| 44<br>45<br>46                         | X_ST<br>RAD<br>LAGE<br>A_LU<br>A_SR                                | Start position at X, i.e. coordinate along the 0X axis,<br>corresponding to the initial position of the grinding wheel<br>in the direction of the 0X axis, relative to the 0-part<br>Part radius i.e. the required value of the radius of the<br>technological section of the part is entered<br>The processed corner can be both internal and external.<br>Depending on this, this parameter has the value<br>Cut amount for idle passes of the grinding wheel: safe<br>position of the tool during idle strokes, i.e. distance<br>between the starting position of the grinding wheel and the<br>roughing allowance<br>Cut amount for rough machining, increment of coordinates                                                                                                                                                                                                                                                                                                                                                                                                                                                           | According to the initial data<br>According to the initial data<br>23 - inner comer, i.e. processing is performed clockwise;<br>31 - outer comer, i.e. processing is performed counterclockwise;<br>It is recommended to assign this parameter from 5 to 10 mm<br>According to the initial data                                                                                                                                                                                           | 200<br>0<br>31<br>5<br>0,2                         |     |    |
| 44<br>45<br>46                         | X_ST<br>RAD<br>LAGE<br>A_LU<br>A_SR                                | Start position at X, i.e. coordinate along the 0X axis,<br>corresponding to the initial position of the grinding wheel<br>in the direction of the 0X axis, relative to the 0-part<br>Part radius i.e. the required value of the radius of the<br>technological section of the part is entered<br>The processed comer can be both internal and external.<br>Depending on this, this parameter has the value<br>Cut amount for idle passes of the grinding wheel: safe<br>position of the tool during idle strokes, i.e. distance<br>between the starting position of the grinding wheel and the<br>roughing allowance<br>Cut amount for rough machining, increment of coordinates<br>of cut amount during rough machining, mm                                                                                                                                                                                                                                                                                                                                                                                                                | According to the initial data<br>According to the initial data<br>23 - inner comer, i.e. processing is performed clockwise;<br>31 - outer comer, i.e. processing is performed counterclockwise;<br>It is recommended to assign this parameter from 5 to 10 mm<br>According to the initial data                                                                                                                                                                                           | 200<br>0<br>31<br>5<br>0,2                         |     |    |
| 44<br>45<br>46<br>47                   | X_ST<br>RAD<br>LAGE<br>A_LU<br>A_SR<br>F_SR                        | Start position at X, i.e. coordinate along the 0X axis,<br>corresponding to the initial position of the grinding wheel<br>in the direction of the 0X axis, relative to the 0-part<br>Part radius i.e. the required value of the radius of the<br>technological section of the part is entered<br>The processed comer can be both internal and external.<br>Depending on this, this parameter has the value<br>Cut amount for idle passes of the grinding wheel: safe<br>position of the tool during idle strokes, i.e. distance<br>between the starting position of the grinding wheel and the<br>roughing allowance<br>Cut amount for rough machining, increment of coordinates<br>of cut amount during rough machining, mm<br>Feed for roughing passes, i.e. increment of grinding wheel                                                                                                                                                                                                                                                                                                                                                  | According to the initial data<br>According to the initial data<br>23 - inner comer, i.e. processing is performed clockwise;<br>31 - outer comer, i.e. processing is performed counterclockwise;<br>It is recommended to assign this parameter from 5 to 10 mm<br>According to the initial data<br>Selected according to reference table 2                                                                                                                                                | 200<br>0<br>31<br>5<br>0,2<br>50                   |     |    |
| 44<br>45<br>46<br>47<br>48             | X_ST<br>RAD<br>LAGE<br>A_LU<br>A_SR<br>F_SR                        | Start position at X, i.e. coordinate along the 0X axis,<br>corresponding to the initial position of the grinding wheel<br>in the direction of the 0X axis, relative to the 0-part<br>Part radius i.e. the required value of the radius of the<br>technological section of the part is entered<br>The processed corner can be both internal and external.<br>Depending on this, this parameter has the value<br>Cut amount for idle passes of the grinding wheel: safe<br>position of the tool during idle strokes, i.e. distance<br>between the starting position of the grinding wheel and the<br>roughing allowance<br>Cut amount for rough machining, increment of coordinates<br>of cut amount during rough machining, mm<br>Feed for roughing passes, i.e. increment of grinding wheel<br>feed at reversal points during pendulum grinding                                                                                                                                                                                                                                                                                             | According to the initial data According to the initial data 23 - inner corner, i.e. processing is performed clockwise; 31 - outer corner, i.e. processing is performed counterclockwise; It is recommended to assign this parameter from 5 to 10 mm According to the initial data Selected according to reference table 7                                                                                                                                                                | 200<br>0<br>31<br>5<br>0,2<br>50                   |     |    |
| 44<br>45<br>46<br>47<br>48<br>49       | X_ST<br>RAD<br>LAGE<br>A_LU<br>A_SR<br>F_SR<br>KS                  | Start position at X, i.e. coordinate along the 0X axis,<br>corresponding to the initial position of the grinding wheel<br>in the direction of the 0X axis, relative to the 0-part<br>Part radius i.e. the required value of the radius of the<br>technological section of the part is entered<br>The processed comer can be both internal and external.<br>Depending on this, this parameter has the value<br>Cut amount for idle passes of the grinding wheel: safe<br>position of the tool during idle strokes, i.e. distance<br>between the starting position of the grinding wheel and the<br>roughing allowance<br>Cut amount for rough machining, increment of coordinates<br>of cut amount during rough machining, mm<br>Feed for roughing passes, i.e. increment of grinding wheel<br>feed at reversal points during pendulum grinding<br>This parameter specifies the use of the structure-bome                                                                                                                                                                                                                                    | According to the initial data According to the initial data 23 - inner corner, i.e. processing is performed clockwise; 31 - outer corner, i.e. processing is performed counterclockwise; It is recommended to assign this parameter from 5 to 10 mm According to the initial data Selected according to reference table 7 1- if used                                                                                                                                                     | 200<br>0<br>31<br>5<br>0,2<br>50                   |     |    |
| 44<br>45<br>46<br>47<br>48<br>49       | X_ST<br>RAD<br>LAGE<br>A_LU<br>A_SR<br>F_SR<br>KS                  | Start position at X, i.e. coordinate along the 0X axis,<br>corresponding to the initial position of the grinding wheel<br>in the direction of the 0X axis, relative to the 0-part<br>Part radius i.e. the required value of the radius of the<br>technological section of the part is entered<br>The processed corner can be both internal and external.<br>Depending on this, this parameter has the value<br>Cut amount for idle passes of the grinding wheel: safe<br>position of the tool during idle strokes, i.e. distance<br>between the starting position of the grinding wheel and the<br>roughing allowance<br>Cut amount for rough machining, increment of coordinates<br>of cut amount during rough machining, mm<br>Feed for roughing passes, i.e. increment of grinding wheel<br>feed at reversal points during pendulum grinding<br>This parameter specifies the use of the structure-bome<br>noise recorder                                                                                                                                                                                                                 | According to the initial data According to the initial data 23 - inner comer, i.e. processing is performed clockwise; 31 - outer comer, i.e. processing is performed counterclockwise; It is recommended to assign this parameter from 5 to 10 mm According to the initial data Selected according to reference table 7 1- if used 2- if not used                                                                                                                                        | 200<br>0<br>31<br>5<br>0,2<br>50<br>1              |     |    |
| 44<br>45<br>46<br>47<br>48<br>49       | X_ST<br>RAD<br>LAGE<br>A_LU<br>A_SR<br>F_SR<br>KS                  | Start position at X, i.e. coordinate along the 0X axis,<br>corresponding to the initial position of the grinding wheel<br>in the direction of the 0X axis, relative to the 0-part<br>Part radius i.e. the required value of the radius of the<br>technological section of the part is entered<br>The processed corner can be both internal and external.<br>Depending on this, this parameter has the value<br>Cut amount for idle passes of the grinding wheel: safe<br>position of the tool during idle strokes, i.e. distance<br>between the starting position of the grinding wheel and the<br>roughing allowance<br>Cut amount for rough machining, increment of coordinates<br>of cut amount during rough machining, mm<br>Feed for roughing passes, i.e. increment of grinding wheel<br>feed at reversal points during pendulum grinding<br>This parameter specifies the use of the structure-bome<br>noise recorder<br>The feed value of the grinding wheel at idle, i.e. value of                                                                                                                                                  | According to the initial data According to the initial data 23 - inner corner, i.e. processing is performed clockwise; 31 - outer corner, i.e. processing is performed counterclockwise; It is recommended to assign this parameter from 5 to 10 mm According to the initial data Selected according to reference table ? 1- if used 2- if not used                                                                                                                                      | 200<br>0<br>31<br>5<br>0,2<br>50<br>1              |     |    |
| 44<br>45<br>46<br>47<br>48<br>49       | X_ST<br>RAD<br>LAGE<br>A_LU<br>A_SR<br>F_SR<br>KS                  | Start position at X, i.e. coordinate along the 0X axis,<br>corresponding to the initial position of the grinding wheel<br>in the direction of the 0X axis, relative to the 0-part<br>Part radius i.e. the required value of the radius of the<br>technological section of the part is entered<br>The processed corner can be both internal and external.<br>Depending on this, this parameter has the value<br>Cut amount for idle passes of the grinding wheel: safe<br>position of the tool during idle strokes, i.e. distance<br>between the starting position of the grinding wheel and the<br>roughing allowance<br>Cut amount for rough machining, increment of coordinates<br>of cut amount during rough machining, mm<br>Feed for roughing passes, i.e. increment of grinding wheel<br>feed at reversal points during pendulum grinding<br>This parameter specifies the use of the structure-bome<br>noise recorder<br>The feed value of the grinding wheel at idle, i.e. value of<br>the feed rate with which the grinding wheel travels the                                                                                       | According to the initial data According to the initial data 23 - inner comer, i.e. processing is performed clockwise; 31 - outer comer, i.e. processing is performed counterclockwise; It is recommended to assign this parameter from 5 to 10 mm According to the initial data Selected according to reference table ? 1- if used 2- if not used                                                                                                                                        | 200<br>0<br>31<br>5<br>0,2<br>50<br>1              |     |    |
| 44<br>45<br>46<br>47<br>48<br>49       | X_ST<br>RAD<br>LAGE<br>A_LU<br>A_SR<br>F_SR<br>KS<br>F_KS          | Start position at X, i.e. coordinate along the 0X axis,<br>corresponding to the initial position of the grinding wheel<br>in the direction of the 0X axis, relative to the 0-part<br>Part radius i.e. the required value of the radius of the<br>technological section of the part is entered<br>The processed corner can be both internal and external.<br>Depending on this, this parameter has the value<br>Cut amount for idle passes of the grinding wheel: safe<br>position of the tool during idle strokes, i.e. distance<br>between the starting position of the grinding wheel and the<br>roughing allowance<br>Cut amount for rough machining, increment of coordinates<br>of cut amount during rough machining, mm<br>Feed for roughing passes, i.e. increment of grinding wheel<br>feed at reversal points during pendulum grinding<br>This parameter specifies the use of the structure-bome<br>noise recorder<br>The feed value of the grinding wheel at idle, i.e. value of<br>the feed rate with which the grinding wheel travels the<br>distance between the starting point and touching the part                          | According to the initial data According to the initial data 23 - inner comer, i.e. processing is performed clockwise; 31 - outer comer, i.e. processing is performed counterclockwise; It is recommended to assign this parameter from 5 to 10 mm According to the initial data Selected according to reference table 7 1- if used 2- if not used Selected according to reference table 7                                                                                                | 200<br>0<br>31<br>5<br>0,2<br>50<br>1<br>700       |     |    |
| 44<br>45<br>46<br>47<br>48<br>49<br>50 | X_ST<br>RAD<br>LAGE<br>A_LU<br>A_SR<br>F_SR<br>KS<br>F_KS          | Start position at X, i.e. coordinate along the 0X axis,<br>corresponding to the initial position of the grinding wheel<br>in the direction of the 0X axis, relative to the 0-part<br>Part radius i.e. the required value of the radius of the<br>technological section of the part is entered<br>The processed corner can be both internal and external.<br>Depending on this, this parameter has the value<br>Cut amount for idle passes of the grinding wheel: safe<br>position of the tool during idle strokes, i.e. distance<br>between the starting position of the grinding wheel and the<br>roughing allowance<br>Cut amount for rough machining, increment of coordinates<br>of cut amount during rough machining, mm<br>Feed for roughing passes, i.e. increment of grinding wheel<br>feed at reversal points during pendulum grinding<br>This parameter specifies the use of the structure-bome<br>noise recorder<br>The feed value of the grinding wheel at idle, i.e. value of<br>the feed rate with which the grinding wheel travels the<br>distance between the starting point and touching the part<br>with the tool, mm/min | According to the initial data According to the initial data 23 - inner comer, i.e. processing is performed clockwise; 31 - outer comer, i.e. processing is performed counterclockwise; It is recommended to assign this parameter from 5 to 10 mm According to the initial data Selected according to reference table ? 1- if used 2- if not used Selected according to reference table ?                                                                                                | 200<br>0<br>31<br>5<br>0,2<br>50<br>1<br>700       |     |    |
| 44<br>45<br>46<br>47<br>48<br>49<br>50 | X_ST<br>RAD<br>LAGE<br>A_LU<br>A_SR<br>F_SR<br>KS<br>F_KS          | Start position at X, i.e. coordinate along the 0X axis,<br>corresponding to the initial position of the grinding wheel<br>in the direction of the 0X axis, relative to the 0-part<br>Part radius i.e. the required value of the radius of the<br>technological section of the part is entered<br>The processed comer can be both internal and external.<br>Depending on this, this parameter has the value<br>Cut amount for idle passes of the grinding wheel: safe<br>position of the tool during idle strokes, i.e. distance<br>between the starting position of the grinding wheel and the<br>roughing allowance<br>Cut amount for rough machining, increment of coordinates<br>of cut amount during rough machining, mm<br>Feed for roughing passes, i.e. increment of grinding wheel<br>feed at reversal points during pendulum grinding<br>This parameter specifies the use of the structure-bome<br>noise recorder<br>The feed value of the grinding wheel at idle, i.e. value of<br>the feed rate with which the grinding wheel travels the<br>distance between the starting point and touching the part<br>with the tool, mm/min  | According to the initial data According to the initial data 23 - inner corner, i.e. processing is performed clockwise; 31 - outer corner, i.e. processing is performed counterclockwise; It is recommended to assign this parameter from 5 to 10 mm According to the initial data Selected according to reference table 7 1- if used 2- if not used Selected according to reference table 7 According to reference table 7                                                               | 200<br>0<br>31<br>5<br>0,2<br>50<br>1<br>700       |     |    |
| 44<br>45<br>46<br>47<br>48<br>49<br>50 | X_ST<br>RAD<br>LAGE<br>A_LU<br>A_SR<br>F_SR<br>KS<br>F_KS<br>UWERK | Start position at X, i.e. coordinate along the 0X axis,<br>corresponding to the initial position of the grinding wheel<br>in the direction of the 0X axis, relative to the 0-part<br>Part radius i.e. the required value of the radius of the<br>technological section of the part is entered<br>The processed comer can be both internal and external.<br>Depending on this, this parameter has the value<br>Cut amount for idle passes of the grinding wheel: safe<br>position of the tool during idle strokes, i.e. distance<br>between the starting position of the grinding wheel and the<br>roughing allowance<br>Cut amount for rough machining, increment of coordinates<br>of cut amount during rough machining, mm<br>Feed for roughing passes, i.e. increment of grinding wheel<br>feed at reversal points during pendulum grinding<br>This parameter specifies the use of the structure-bome<br>noise recorder<br>The feed value of the grinding wheel at idle, i.e. value of<br>the feed rate with which the grinding wheel travels the<br>distance between the starting point and touching the part<br>with the tool, mm/min  | According to the initial data According to the initial data 23 - inner comer, i.e. processing is performed clockwise; 31 - outer comer, i.e. processing is performed counterclockwise; It is recommended to assign this parameter from 5 to 10 mm According to the initial data Selected according to reference table 7 1 - if used 2 - if not used Selected according to reference table 7 | 200<br>0<br>31<br>5<br>0,2<br>50<br>1<br>700<br>20 | n = | 32 |

Fig. 2. Parameter assignment for radius grinding CYCLE414.

**Results.** A software tool has been developed in the form of a Microsoft Excel book containing tables from the reference book of the Chelyabinsk Research Institute of Abrasives and Grinding. The software tool allows you to determine the parameters of the standard grinding cycles of the Siemens SINUMERIK 802D sl system using reference data.

**Acknowledgments.** The research was carried out with financial support from the Ministry of Science and Higher Education of the Russian Federation (Grant No. FENU-2020-0020).

## **REFERENCES:**

- [1]. Pereverzev P, Pimenov D., *Optimization of control programs for numerically controlled machine tools by dynamic programming*. Russian Engineering Research 35(2):135–142, (2015)
- [2]. Guzeev V., Nurkenov A., *Designing the plunge-grinding cycle on the basis of the rigidity of the techno-logical system.* Russian Engineering Research 35(2):150–153, (2015).
- [3]. Pereverzev P., Akintseva A., *Optimal internal grinding cycles in multidimensional control-parameter space*. Russian Engineering Research 36(11):974–978, (2016).
- [4]. Malkin S., Koren Y., Ber A., *Off-Line Grinding Optimization with a Micro-Computer*. CIRP Annals 29(1):213–216. <u>https://doi.org/10.1016/S0007-8506(07)61324-9</u>, (1980).
- [5]. Malkin S., *Grinding Cycle Optimization*. CIRP Annals 30(1):223–226. <u>https://doi.org/10.1016/S0007-8506(07)60930-5</u>, (1981).
- [6]. Xiao G., Malkin S., *On-Line Optimization for Internal Plunge Grinding*. CIRP Annals Manufacturing Technology 45(1):287–292, (1996).
- [7]. Ivester R., Danai K., Malkin S. *Optimization of cylindrical plunge grinding by recursive constraint bounding*. American Society of Mechanical Engineers, Dynamic Systems and Control Division 57-1:529–537, (1995).
- [8]. Aravind M., Periyasamy Dr. Optimization of Surface Grinding Process Parameters By Taguchi Method And Response Surface Methodology. IJERT 3(5):1721–1727, (2000).
- [9]. SIEMENS SINUMERIK 802D sl. Cylindrical Grinding: A Guide to Programming and Operation. Software version 1.4. for access: <u>https://cache.industry.siemens.com/dl/files/125/28436125/att\_76624/v1/802Dsl\_BPRS\_0709\_ru\_r</u> u-RU.pdf. - 04.06.2021.
- [10]. Ardashev D.V., *Cutting modes for work performed on grinding and lapping machines with manual control and semiautomatic devices: reference book / [and others]*. Chelyabinsk: Publishing house of ATOKSO, 384 p (2007).

**Received:** 05.06.2021 Accepted: 14.08.2021