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Abstract: The article provides a matrix generalization of distortion models and scattering fields 

of dimensions performed during turning with a spatial arrangement of the tool, taking into account 

the simultaneous action of all components of the cutting forces of the setting tool and elastic 

deformations of the technological system in all coordinate directions. A full-factor model of dimension 

distortion for single-carriage adjustment has been developed, which allows taking into account not only plane-

parallel movements of technological subsystems, but also their angular movements around base points.  Thus, 

the Eq. developed for the total displacement vectors 𝑢𝑖 is proposed to be taken as the basis for a full-factor 

model of the machining error. The presented analytical models describe only plane-parallel displacements of 

contacting bodies. It is shown that in order to take into account the whole complex of displacements in them, 

i.e. and angular displacements, it is sufficient to replace the plane-parallel displacement vectors of each 

contacting body 𝑟𝑖. 
Keywords: matrix generalization of the theory of accuracy, turning, distortion models, models of 

scattering fields, performed dimensions, coordinate displacements of the technological system, compliance 

matrix of technological system, machining error 
 

Introduction. Machining accuracy is predetermined by a whole complex of random and regular 

factors, their mutual influence and interaction: dimensional wear of the cutting tool (w), temperature 

deformations (t) and geometric inaccuracies of the technological system links (m), errors in the 

installation of workpieces on the machine (𝛥𝜀𝑖) and its settings for the size being performed (s), 

spread of allowances and physical and mechanical properties of workpieces, etc. [1, 2]. The 

machining accuracy has its numerical expression through the machining error, which characterizes 

the degree of discrepancy between the real part and the ideal scheme underlying the machining 

method. All elementary error components can be divided into two groups:  

- independent or weakly dependent on cutting conditions: s,  w, 𝛥𝜀𝑖, m, t; 

- determined by cutting conditions: y. 

The first group of errors is not of interest in the development of a simulation model intended for 

designing a technological process. These components in the simulation model participate as 

constants, the values of which are taken from the extensive reference literature [2].  

A special place in modeling the accuracy of machining is occupied by the elementary error y, 

which occurs due to the elastic displacements of the technological system under the action of cutting 

forces. Its value is directly determined by the cutting conditions and the characteristics of the 

technological system. Therefore, it is the main control object, which requires a strict mathematical 

description. 

The foundations of accuracy modeling were laid by A.P. Sokolovsky and K.V. Votinov [3]. 

Further study of these issues was carried out by B.S. Balakshin, V.S. Korsakov, B.M. Bazrov [4]. 

Since the machining error is characterized by a number of different indicators, two groups of 

machining error models can be distinguished: 
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- dimension distortion model; 

- model of scattering field of dimension. 

For the simplest case of turning, the scheme for the formation of dimension distortion was 

formed by V.S. Korsakov (Fig. 1.).  
 

 
 

Fig.1. Scheme of elastic displacements of the technological system during turning [3] 
 

Under the action of cutting forces, the links of the technological system are displaced from the 

initial (unloaded) state, which ultimately causes a violation of the relative position of cutting edge of 

the tool and the workpiece surface established by the adjustment. Since the technological system in 

the range of loads inherent in the cutting process is a linear elastically deformable system, he proposed 

a formula for the value of the mutual displacement of the tool and workpiece: y = y1 + y2, which 

makes it possible to calculate the dimension distortion in the diametrical direction depending on the 

machining conditions. 

When machining a batch of workpieces, the cutting force changes as a result of uneven depth 

of cut (due to the variability of the size of the workpieces in the batch) and the instability of the 

mechanical properties of the material of the workpieces. The instability of the cutting force leads to 

the inconstancy of the amount of elastic compression, and, consequently, the size of the part in the 

batch. B.S. Balakshin formulated the principle of taking into account fluctuations in the allowance 

when calculating the machining error [3]. 

V.S. Korsakov proposed analytical dependencies to determine the error of the performed 

dimension of single-tool turning. He proposed to determine the scattering field of the dimension being 

performed in a given section as the difference between the largest and smallest values of the residual 

(not removed due to elastic displacements) depth of cut. However, he takes into account only 

fluctuations in the allowance and hardness of the material being machined, and these are not all the 

factors that determine the scattering of elastic deformations. 

K.V. Votinov introduced into the scattering field model, along with the traditional component, 

determined by the allowance fluctuations, a new one, determined by the depth of cut. However, the 

coefficients in this formula are determined experimentally, and therefore the entire dependence is 

empirical. 

Formulation of the problem. The component of the machining error that occurs due to the 

elastic displacement of the elements of the technological system under the influence of cutting forces, 

which is often called the deformation component, is the most controllable during the machining 

process and at the design stage. By varying the cutting conditions, the geometry of the cutting tool, 
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the cutting material, the initial error, one can significantly influence the magnitude of the machining 

error. Therefore, the mathematical model of the deformation component of the machining error is the 

basis of the computational theory of machining accuracy. 

It is generally accepted that the model of the deformation component of the machining error 

can be built using the theory of linear deformable systems [5]. However, when describing the 

properties of a deformable system, in our case it is a technological system, the question arises about 

the degree of detail of the description. The L.P. Medvedev model takes into account one characteristic 

of the system - its total rigidity, while the B.M. Bazrov model takes into account the rigidity of all 

elements of the system [3, 5]. The second approach is absolutely correct methodically and leads to a 

strict logical statement of the problem, however, in this case the model becomes very cumbersome 

and cannot be analyzed analytically. In addition, the practical determination of the rigidity of each 

element is associated with significant difficulties. 

Therefore, it is proposed, in accordance with the methodology of B.M. Bazrov, to decompose 

the technological system into its component parts, but limit it to the level of subsystems, and the 

number of subsystems should be minimal [5]. Taking into account the specifics of automatic lathe 

machining (sufficient rigidity of the part, its predominant cantilever fastening), it is proposed to 

distinguish the following subsystems: 

- spindle - chuck (collet) - part; 

- carriage – holder – tool. 

For each of these subsystems, it can be considered that, under the influence of cutting forces, it 

experiences elastic displacement as a single element. The rigidity of such a subsystem can be easily 

determined experimentally using a modified production method [5]. The production method makes 

it possible to evaluate the rigidity during machining and therefore simultaneously takes into account 

the dynamics of the deformation process. 

The true dynamic characteristics of the rigidity of the machine tool and other elements of the 

technological system (amplitude-frequency and amplitude-frequency-phase characteristics) more 

accurately describe the resistance of deformable elements during the application and removal of the 

load [6]. However, their values for automatic turning equipment are not available in the reference 

literature, and the methods of experimental evaluation have been worked out only for the simplest 

cases. 

Distortion of performed dimension. In accordance with the formulation of the problem, we 

decompose into two subsystems: 

- subsystem 0: “spindle-chuck-part” (rigidity along the coordinate axes Y and X respectively 

𝑗𝑦0 and 𝑗𝑥0); 

- subsystem 1: “carriage-holder-tool” (rigidity along the coordinate axes Y and X respectively 

𝑗𝑦1 and 𝑗𝑥1). 

Then the calculation scheme of V.S. Korsakov (Fig. 1) is converted to the form shown in Fig. 

2. 

Under the action of force 𝑃𝑦0 subsystem 0 has displacement 0y , and subsystem 1 under the 

action of reaction Py1 has displacement y1. Considering each subsystem as elastically deformable, we 

obtain: 

- for displacements of subsystem 0 along the Y and X axes, respectively: 
 

𝑦0 =
𝑃𝑦

𝑗𝑦𝑜
 ,    𝑥0 =

𝑃𝑥

𝑗𝑥𝑜
 

 

- for displacements of subsystem 1 along the Y and X axes:  
 

𝑦1 = −
𝑃𝑦

𝑗𝑦1
 ,  𝑥1 = −

𝑃𝑥

𝑗𝑥1
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Fig. 2. Design scheme for elastic displacements of subsystems of technological system in turning 
 

Performing the vector summation of these displacements in accordance with the design 

scheme, we obtain the distortions of the performed dimensions along each axis with respect to the 

static setting: 

𝑦 = 𝑦0 − 𝑦1 = 𝑃𝑦 (
1

𝑗𝑦0
+

1

𝑗𝑦1
) =

𝑃𝑦

𝑗𝑦01
;   𝑥 = 𝑥0 − 𝑥1 = 𝑃𝑥 (

1

𝑗𝑥0
+

1

𝑗𝑥1
) =

𝑃𝑥

𝑗𝑥01
   (1) 

 

where jyo1 and jxo1 are the total rigidity of the technological system along the coordinate axes Y and 

X, respectively: 

 
1

𝑗𝑦01
=

1

𝑗𝑦0
+

1

𝑗𝑦1
 ;  

1

𝑗𝑥01
=

1

𝑗𝑥0
+

1

𝑗𝑥1
    (2) 

 

 

Using the cutting forces 𝑃𝑦 = 𝐶𝑝𝑦𝑡
𝑥𝑝𝑦𝑆𝑦𝑝𝑦 ,  𝑃𝑥 = 𝐶𝑝𝑥𝑡

𝑥𝑝𝑥𝑆𝑦𝑝𝑥  model and denoting the actual 

depth of cut 𝑡𝑓 to distort dimensions, we get: 
 

                        𝑦 =
𝐶𝑝𝑦𝑡𝑡𝑚

𝑥𝑝𝑦
𝑆
𝑦𝑝𝑦

𝑗𝑦01
   ;  𝑥 =

𝐶𝑝𝑥𝑡𝑡𝑚

𝑥𝑝𝑦
𝑆𝑦𝑝𝑥

𝑗𝑥01
   (3) 

 

As follows from the design scheme (Fig. 2), the actual depth of cut 𝑡𝑓 is expressed through 

the calculated t:                           

𝑡𝑓 = 𝑡 − 𝑦0 − 𝑦1 = 𝑡 − 𝑦                                             (4) 

Then from (3) we arrive at the system of transcendental Eqs.: 

{
𝑦 =

𝐶𝑝𝑦(𝑡−𝑦)
𝑥𝑝𝑦𝑆

𝑦𝑝𝑦

𝑗𝑦01

𝑥 =
𝐶𝑝𝑥(𝑡−𝑦)

𝑥𝑝𝑥𝑆𝑦𝑝𝑥

𝑗𝑥01

      (5)  
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Since the condition y<< t is valid for the case of cutting edge machining, it is possible to get rid 

of transcendence in expressions (5) by linearization: 

                           (𝑡 − 𝑦)𝑥𝑝𝑦 = 𝑡𝑥𝑝𝑦 (1 −
𝑦

𝑡
)
𝑥𝑝𝑦

≈ 𝑡𝑥𝑝𝑦 (1 −
𝑦

𝑡
𝑥𝑝𝑦) 

Solving the resulting linear Eq. with respect to y, we obtain: 

                  𝑦 =
1

1+
𝐶𝑝𝑦𝑡

𝑥𝑝𝑦−1𝑆
𝑝𝑦

𝑗𝑦01
∙𝑥𝑝𝑦

∙
𝐶𝑝𝑦𝑡

𝑥𝑝𝑦𝑆𝑝𝑦

𝑗𝑦01
    (6) 

Since, under real conditions of turning, the elastic displacements of the technological system 

are much less than the allowance to be removed (calculated depth of cut), the influence of the 

correction in the denominator can be neglected (see Table 1). 

 

Table 1. Influence of the correction in the denominator in formula (6) [5]. 
 

№ Machining conditions 
𝐶
𝑝𝑦𝑡

𝑥𝑝𝑦−1𝑆
𝑦𝑝𝑦

𝑗𝑦01
∙ 𝑥𝑝𝑦 

1 
External turning of structural steel with a carbide cutter on a 1K62 

machine, t = 2 mm, S = 0.15 mm/rev 
0,065 

2 Rough turning, t = 4 mm, S = 0.6 mm/rev 0,11 

3 Turning with a high speed tool, t = 2 mm 0,025 
 

Thus, for cutting edge machining, we can take the dependence: 
 

        𝑦 ≈
𝐶𝑝𝑦𝑡

𝑥𝑝𝑦𝑆
𝑦𝑝𝑦

𝑗𝑦01
   ;  𝑥 ≈

𝐶𝑝𝑥𝑡
𝑥𝑝𝑥𝑆𝑦𝑝𝑥

𝑗𝑥01
   (7) 

 

The resulting expressions are close to the L.P. Medvedev model [5]. However, the total rigidity 

of the technological system along the coordinate axes Y and X works here, which have a clear 

physical meaning and, taking into account expressions (2), allow a rigorous experimental 

determination, for example, using a modified production method [5]. 

Scattering field of performed dimension. Expressions (7) make it possible to calculate the 

distortions of the performed dimensions, that is, to estimate the error of the static adjustment. These 

expressions can be used to calculate the adjustment size. However, a more relevant characteristic of 

the accuracy of the performed dimension is the magnitude of the scattering field. 

The works of B.S. Balakshin and V.S. Korsakov laid the foundations for the calculation of the 

scattering field, they also identified the main factors that predetermine the occurrence of scattering 

fields (fluctuations in the allowance and strength properties of the material being machined in a batch 

of parts). 

In production, the machining of a batch of parts is carried out not on one machine, but on a 

certain group of machines (one model), which also have a spread in their characteristics. Therefore, 

the stiffness value in model (7) also has a spread. According to GOST 43-85, 18097-88, 6820-75 

lathes of normal accuracy have an allowable variation in rigidity of about 20% [7]. The spread of the 

strength properties of workpieces is also regulated: for rolled products, the tolerance for ultimate 

strength 𝜎𝑏 is 20% [2, 5]. 

Therefore, the main technological factors causing the appearance of scattering fields can be 

called [1, 3, 5]: 

- machining allowance fluctuations 𝑡 ∈ [𝑡 −
∆𝑡

2
;   𝑡 +

∆𝑡

2
]               (8)                       
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- variability in mechanical properties (e.g. hardness) of workpieces within a batch  

   

𝐶𝑡𝑚 ∈ 𝐶, [1 −
𝜈

2
;   1 +

𝜈

2
]     (9) 

 

- variation in rigidity of different machines of the same model  

 

𝑗𝑡𝑚 ∈ 𝑗, [1 −
Δ𝑗

2
;   1 +

Δ𝑗

2
]    (10) 

                                                                      

Such a mathematical representation of possible fluctuations in the properties of the 

technological system indicates the way for calculating the magnitude of the scattering field.  

To determine the scattering field of the dimension being performed (its dynamic component), 

it is necessary to find the limiting values of the dimension distortion. 

        𝑦𝑚𝑎𝑥 =
𝐶𝑝𝑦  (1+

𝜈

2
)(𝑡+

Δ𝑡

2
)
𝑥𝑝𝑦

𝑆
𝑦𝑝𝑦

 

𝑗𝑦01(1−
Δ𝑗

2
)

      (11) 

 

𝑦𝑚𝑖𝑛 =
𝐶𝑝𝑦  (1−

𝜈

2
)(𝑡−

Δ𝑡

2
)
𝑥𝑝𝑦

𝑆
𝑦𝑝𝑦

 

𝑗𝑦01(1+
Δ𝑗

2
)

      (12) 

As a result, for the scattering field we obtain: 
 

 Δ𝑦 =
𝐶𝑝𝑦𝑡

𝑥𝑝𝑦𝑆
𝑦𝑝𝑦

𝑗𝑦01
∙ [
(1+

𝜈

2
)(1+

Δ𝑡

2𝑡
)
𝑥𝑝𝑦

(1−
Δ𝑗

2
)

−
(1−

𝜈

2
)(1−

Δ𝑡

2𝑡
)
𝑥𝑝𝑦

(1+
Δ𝑗

2
)

] (13) 

 

For the obtained dependence (13), linearization is admissible, since 0.5𝜈 << 1,   0.5∆𝑗 << 1 

and for cutting edge machining, ∆𝑡/2𝑡 < 1 is true. Therefore, one can write: 
 

(1 −
Δ𝑡

2𝑡
)
𝑥𝑝𝑦

≈ 1 −
𝑥𝑝𝑦Δ𝑡

2𝑡
;      

1

1−
∆𝑗

2

≈ 1 +
∆𝑗

2
;         

1

1+
∆𝑗

2

≈ 1 −
∆𝑗

2
  

After substitution into (13) we obtain: 
 

Δ𝑦 =
𝐶𝑝𝑦𝑡

𝑥𝑝𝑦𝑆
𝑦𝑝𝑦

𝑗𝑦01
[(1 +

𝜈

2
) (1 +

∆𝑗

2
) (1 + 𝑥𝑝𝑦

∆𝑡

2𝑡
) − (1 −

𝜈

2
) (1 −

∆𝑗

2
) (1 − 𝑥𝑝𝑦

∆𝑡

2𝑡
)] 

 

Considering that , j and t are small values, after discarding the values of the second order 

of smallness and introducing the designation j+= for the total spread of the properties of the 

technological system, we have for the diametrical dimension: 
 

                               Δ𝑦 ≈
𝐶𝑝𝑦𝑡

𝑥𝑝𝑦−1𝑆
𝑦𝑝𝑦

𝑗𝑦01
[𝜔𝑡 + 𝑥𝑝𝑦∆𝑡]     (14) 

 

Similarly for the linear dimension: 
 

                        Δx ≈
𝐶𝑝𝑥𝑡

𝑥𝑝𝑥−1𝑆𝑦𝑝𝑥

𝑗𝑥01
[𝜔𝑡 + 𝑥𝑝𝑥∆𝑡]    (15) 
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As you can see, the value of the scattering field depends not only on the fluctuations of the 

allowance, but has a term with the value of the allowance to be removed. Thus, these formulas are an 

analytical representation of the K.V.Votinov model, which predicted the existence of such a 

relationship. 

For common cutting conditions, the dependence of cutting forces on depth is very close to 

linear: the exponents 𝑥𝑝𝑦 and 𝑥𝑝𝑥 for longitudinal turning with a carbide cutter are of the order of 0.9. 

Therefore, it is permissible to use models linearized in t: 
 

Δ𝑦 ≈
𝐶𝑝𝑦𝑆

𝑦𝑝𝑦

𝑗𝑦01
[𝜔𝑡 + ∆𝑡]    (16) 

 

                         Δx ≈
𝐶𝑝𝑥𝑆

𝑦𝑝𝑥

𝑗𝑥01
[𝜔𝑡 + ∆𝑡]    (17) 

 
 

Matrix models. Models of distortion of the performed dimensions (7) of the scattering field 

(14, 15) are built under the assumption that the displacements of technological subsystems in the y 

direction are formed by the component of the cutting force py, and in the x direction - only px. This 

assumption is valid for rigid parts of small dimensions and with a ratio of overall dimensions L = D. 

In general cases, all components of the cutting force affect the coordinate displacements of 

technological subsystems. That is why the rigidity of the spindle and tailstock is taken into 

consideration, the rotation of the spindle is considered and the center of rotation is calculated [5]. 

These influences can be taken into account based on the general laws of analytical mechanics [3]. 

Since the cutting force during turning is a vector in three-dimensional space and the elastic 

displacements of technological subsystems under the action of this force are also described by a 

spatial vector, generalizing the coordinate Eqs. (7) to distort the dimensions performed, we can 

proceed to the vector Eq. [8-18]: 

�̅� = 𝑐̅ ∙ �̅�     (18) 
 

where g – vector of elastic displacement of the technological system;  �̅� = (

𝑝𝑥
𝑝𝑦
𝑝𝑧
) - vector of 

cutting force;  𝑐̅ = (

𝑐𝑥𝑥   𝑐𝑥𝑦   𝑐𝑥𝑧
𝑐𝑦𝑥   𝑐𝑦𝑦   𝑐𝑦𝑧
𝑐𝑧𝑥   𝑐𝑧𝑦   𝑐𝑧𝑧

) - compliance matrix of technological system. 

In the coordinate Eq.s (1, 2, 3, 5), the compliance of the technological system is characterized 

by its reciprocal value - rigidity (along the coordinate directions 1yoj  and 1xoj ). In terms of rigidity, 

the matrix c can be represented as: 

𝑐̅ =

(

 
 

1

𝑗𝑥𝑥
    

1

𝑗𝑥𝑦
   
1

𝑗𝑥𝑧
 

1

𝑗𝑦𝑥
    

1

𝑗𝑦𝑦
   
1

𝑗𝑦𝑧
1

𝑗𝑧𝑥
    

1

𝑗𝑧𝑦
   
1

𝑗𝑧𝑧)

 
 

      (19) 

where 𝑗𝑥𝑥 and 𝑗𝑦𝑦 correspond to the stiffness along the x (𝑗𝑥01) and y (𝑗𝑦01) axis in 

the coordinate Eq.s. In the vector Eq. of the cutting force, one can use the traditional 

notation for the cutting theory for the coordinate components 𝑃𝑥,  𝑃𝑦,  𝑃𝑧. 

                                        𝑝𝑖 = 𝑐𝑖𝑡
𝑥𝑖𝑠𝑦𝑖𝜐𝑧𝑖   (i = x, y, z)    (20) 
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Taking into account the introduced notation (19, 20), expression (18) is a vector model of the 

distortion of the performed dimension. The distortion of the diametral dimension (distortion in the y 

direction) is described by the second component of the vector �̅�: 

                                   𝑔𝑦 = 𝑦 =
𝑐𝑦𝑡

𝑥𝑦𝑠𝑦𝑦𝜐𝑧𝑦

𝑗𝑦𝑦
+
𝑐𝑥𝑡

𝑥𝑥𝑠𝑦𝑥𝜐𝑧𝑥

𝑗𝑦𝑥
+
𝑐𝑧𝑡

𝑥𝑧𝑠𝑦𝑧𝜐𝑧𝑧

𝑗𝑦𝑧
   (21) 

the distortion of the linear dimension is described by the first component of the vector �̅�: 

                     𝑔𝑥 = 𝑥 =
𝑐𝑥𝑡

𝑥𝑥𝑠𝑦𝑥𝜐𝑧𝑥

𝑗𝑥𝑥
+
𝑐𝑦𝑡

𝑥𝑦𝑠𝑦𝑦𝜐𝑧𝑦

𝑗𝑥𝑦
+
𝑐𝑧𝑡

𝑥𝑧𝑠𝑦𝑧𝜐𝑧𝑧

𝑗𝑥𝑧
   (22) 

 

Eqs. (21, 22) are a matrix generalization of coordinate Eqs. (7). The first terms in the 

generalized Eqs. represent the right-hand sides of Eqs. (7) and describe the direct influence of the 

cutting force component of the same name (force Py on the diametral dimension - y, force Px on the 

linear dimension - x). The remaining terms describe the indirect influence of other components of the 

cutting force. 

To form a vector model of the scattering field, we consider, by analogy with expressions (11, 

12), taking into account the notation (8, 9, 10), the expressions for fluctuations in the cutting force:  
 

                          max  𝑝𝑖 = 𝑐𝑖 (1 +
𝜈

2
) (𝑡 +

Δt

2
)
𝑥𝑖
𝑠𝑦𝑖𝜈𝑧𝑖   (i = x, y, z)   (23) 

 

min  𝑝𝑖 = 𝑐𝑖 (1 −
𝜈

2
) (𝑡 −

Δt

2
)
𝑥𝑖
𝑠𝑦𝑖𝜈𝑧𝑖       (i = x, y, z) (24)     

                  

 The maximum compliance of the technological system is described by the following matrix: 
 

       𝑚𝑎𝑥  𝑐̅ =

(

 
 
 

1

𝑗𝑥𝑥(1−
𝜀

2
)
    

1

𝑗𝑥𝑦(1−
𝜀

2
)
   

1

𝑗𝑥𝑧(1−
𝜀

2
)
 

1

𝑗𝑦𝑥(1−
𝜀

2
)
    

1

𝑗𝑦𝑦(1−
𝜀

2
)
   

1

𝑗𝑦𝑧(1−
𝜀

2
)

1

𝑗𝑧𝑥(1−
𝜀

2
)
    

1

𝑗𝑧𝑦(1−
𝜀

2
)
   

1

𝑗𝑧𝑧(1−
𝜀

2
))

 
 
 
=

1

(1−
𝜀

2
)

(

 
 

1

𝑗𝑥𝑥
    

1

𝑗𝑥𝑦
   
1

𝑗𝑥𝑧
 

1

𝑗𝑦𝑥
    

1

𝑗𝑦𝑦
   
1

𝑗𝑦𝑧
1

𝑗𝑧𝑥
    

1

𝑗𝑧𝑦
   
1

𝑗𝑧𝑧)

 
 

  (25) 

  

For minimal compliance, the matrix is transformed to the form: 
 

           𝑚𝑖𝑛  𝑐̅ =

(

 
 
 

1

𝑗𝑥𝑥(1+
𝜀

2
)
    

1

𝑗𝑥𝑦(1+
𝜀

2
)
   

1

𝑗𝑥𝑧(1+
𝜀

2
)
 

1

𝑗𝑦𝑥(1+
𝜀

2
)
    

1

𝑗𝑦𝑦(1+
𝜀

2
)
   

1

𝑗𝑦𝑧(1+
𝜀

2
)

1

𝑗𝑧𝑥(1+
𝜀

2
)
    

1

𝑗𝑧𝑦(1+
𝜀

2
)
   

1

𝑗𝑧𝑧(1+
𝜀

2
))

 
 
 
=

1

(1+
𝜀

2
)

(

 
 

1

𝑗𝑥𝑥
    

1

𝑗𝑥𝑦
   
1

𝑗𝑥𝑧
 

1

𝑗𝑦𝑥
    

1

𝑗𝑦𝑦
   
1

𝑗𝑦𝑧
1

𝑗𝑧𝑥
    

1

𝑗𝑧𝑦
   
1

𝑗𝑧𝑧)

 
 

  (26) 

 

 The vector analogue of Eq. (11) - the maximum distortion of the dimension being performed 

- will be described, taking into account the notation (23 - 26), as follows:  

 

max �̅� =
1

(1−
𝜀

2
)
𝑐̅

(

 
 
𝑐𝑥 (1 +

𝜈

2
) (𝑡 +

𝑥𝑥

2
Δ𝑡) 𝑠𝑦𝑥𝜐𝑧𝑥

𝑐𝑦 (1 +
𝜈

2
) (𝑡 +

𝑥𝑦

2
Δ𝑡) 𝑠𝑦𝑦𝜐𝑧𝑦

𝑐𝑧 (1 +
𝜈

2
) (𝑡 +

𝑥𝑧

2
Δ𝑡) 𝑠𝑦𝑧𝜐𝑧𝑧

)

 
 
=
1+

𝜈

2

1−
𝜀

2

𝑐̅ [(

𝑐𝑥𝑡𝑠
𝑦𝑥𝜐𝑧𝑥

𝑐𝑦𝑡𝑠
𝑦𝑦𝜐𝑧𝑦

𝑐𝑧𝑡𝑠
𝑦𝑧𝜐𝑧𝑧

) +
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+
1

2
(

𝑐𝑥𝑥𝑥Δ𝑡𝑠
𝑦𝑥𝜐𝑧𝑥

𝑐𝑦𝑥𝑦Δ𝑡𝑠
𝑦𝑦𝜐𝑧𝑦

𝑐𝑧𝑥𝑧Δ𝑡𝑠
𝑦𝑧𝜐𝑧𝑧

)] =
1+

𝜈

2

1−
𝜀

2

𝑐̅ [(

𝑐𝑥𝑠
𝑦𝑥𝜐𝑧𝑥

𝑐𝑦𝑠
𝑦𝑦𝜐𝑧𝑦

𝑐𝑧𝑠
𝑦𝑧𝜐𝑧𝑧

) + +
Δ𝑡

2
(

𝑐𝑥𝑥𝑥𝑠
𝑦𝑥𝜐𝑧𝑥

𝑐𝑦𝑥𝑦𝑠
𝑦𝑦𝜐𝑧𝑦

𝑐𝑧𝑥𝑧𝑠
𝑦𝑧𝜐𝑧𝑧

)] =
1+

𝜈

2

1−
𝜀

2

𝑐̅ [𝑡𝑝�̅� +
Δ𝑡

2
𝑝Δ𝑡̅̅ ̅̅ ]    (27) 

 

Where vector 𝑝�̅� = (

𝑐𝑥𝑠
𝑦𝑥𝜐𝑧𝑥

𝑐𝑦𝑠
𝑦𝑦𝜐𝑧𝑦

𝑐𝑧𝑠
𝑦𝑧𝜐𝑧𝑧

) characterizes the degree of influence of the depth of cut t, 

vector 𝑝Δ𝑡̅̅ ̅̅ = (

𝑥𝑥𝑐𝑥𝑠
𝑦𝑥𝜐𝑧𝑥

𝑥𝑦𝑐𝑦𝑠
𝑦𝑦𝜐𝑧𝑦

𝑥𝑧𝑐𝑧𝑠
𝑦𝑧𝜐𝑧𝑧

) characterizes the degree of influence of allowance fluctuations. 

Similarly, for the minimum distortion of the performed dimension, one can immediately write 

out the vector expression: 

                                     𝑚𝑖𝑛 �̅� =
1−

𝜈

2

1+
𝜀

2

𝑐̅ [𝑡𝑝�̅� −
Δ𝑡

2
𝑝Δ𝑡̅̅ ̅̅ ]     (28) 

By analogy with expressions (14, 15), we obtain a vector expression for the scattering field:  
 

Δ𝑔 =
1+

𝜈

2

1−
𝜀

2

𝑐̅ [𝑡𝑝�̅� +
Δ𝑡

2
𝑝Δ𝑡̅̅ ̅̅ ] −

1−
𝜈

2

1+
𝜀

2

𝑐̅ [𝑡𝑝�̅� −
Δ𝑡

2
𝑝Δ𝑡̅̅ ̅̅ ] = 𝑐̅ {𝑡𝑝�̅� (

1+
𝜈

2

1−
𝜀

2

−
1−

𝜈

2

1+
𝜀

2

) +
Δ𝑡

2
𝑝Δ𝑡̅̅ ̅̅ (

1+
𝜈

2

1−
𝜀

2

+
1−

𝜈

2

1+
𝜀

2

)} =

|
|

1+
𝜈

2
+
𝜀

2
+
𝜈𝜀

4
−1+

𝜈

2
+
𝜀

2
−
𝜈𝜀

4

1−
𝜀2

4

= 𝜈 + 𝜀 = 𝜔

1+
𝜈

2
+
𝜀

2
+
𝜈𝜀

4
−1−

𝜈

2
−
𝜀

2
−
𝜈𝜀

4

1−
𝜀2

4

= 2
|
| = 𝑐̅{𝜔𝑡𝑝�̅� + Δ𝑡𝑝�̅�}    (29) 

Expression (29) is a matrix generalization of the model of the scattering field of the performed 

dimensions. The transition to a specific dimension is reduced to considering the corresponding 

coordinate of the vector g. For example, for the magnitude of the scattering field of the diametrical 

dimension, the relation is true: 

Δ𝑦 = Δ𝑔𝑦      (30) 

for a linear dimension we get: 

Δ𝑥 = Δ𝑔𝑥       (31) 

Full-factor model of dimensional distortion. All models of machining error (distortions in 

dimensions, scattering fields of dimensions) formed in (7), (14, 15), (18), (29) take into account only 

plane-parallel movements of the subsystems of the technological system along the coordinate axes of 

the Cartesian coordinate system X, Y, Z. Such an approach to modeling the process of formation of 

machining errors is acceptable for parts that have overall dimensions of the same order in all 

coordinate directions. However, in practice, it is not uncommon for turning operations to machine 

parts with overall dimensions that differ significantly in different directions. For example, long shafts 

(predominant linear dimension), disks and flanges (predominant diametrical dimension). In these 

cases, a significant contribution to the machining error can be made by the rotation of the workpiece, 

especially in the directions of the prevailing overall dimensions. 

The need to take into account the angular displacements of the workpiece under the action of 
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cutting forces was pointed out in the works of A.P.Sokolovsky, V.S.Korsakov, D.D.Medvedev and 

others. [3]. They offer even the simplest analytical dependences for calculating these angular 

displacements. However, all these dependences are of a particular nature, they include a number of 

parameters, the determination of which in practice is associated with insurmountable difficulties. For 

example, the center of rotation of the spindle is generally a virtual object that cannot be practically 

measured. Most importantly, these models do not agree with the general laws of the mechanics of 

elastically deformable systems. Therefore, they cannot be used to build a unified theory of machining 

accuracy, taking into account the possible angular displacements of the subsystems of the 

technological system.  

As is known from analytical mechanics, a body in space has 6 degrees of freedom: 

-3 plane-parallel movements along the coordinate axes X, Y, Z; 

- 3 rotations around each of the coordinate axes [9, 13, 15]. 

 Fixing the position of a rigid body in space is carried out by imposing constraints on each 

degree of freedom. Three bonds limit the plane-parallel movement along the corresponding 

coordinate axes and three bonds limit the angular displacement of the body around each of the 

coordinate axes. The level of restriction of the freedom of movement of the body, created by the 

superimposed connection, is characterized by the rigidity of the connection, or its reciprocal value - 

the compliance of the connection.  

In [9, 13, 15], to describe the displacements of a body in space, taking into account all six 

degrees of freedom, its position is given by two parameters (Fig. 3) [4]: 

 - point O (x0; y0; z0) belonging to the body; 

 - vector 𝑙 ̅of unit length, belonging to the body and directed, for example, along its prevailing 

direction. 

All plane-parallel displacements of the body are characterized by displacements of point O. The 

angular displacements of the body are described by rotations of the vector 𝑙 ̅around the point O.  

The movements of the body occur as a result of the force �̅� applied at point A (x, y, z), also 

belonging to the body. 

Let the vector �̅� = (𝑟𝑥, 𝑟𝑦, 𝑟𝑧) be the plane-parallel displacement of the point O, the vector �̅� =

(𝜔𝑥, 𝜔𝑦, 𝜔𝑧) the angle of rotation of the body, and formally the vector 𝑙,̅ which specifies the 

orientation of the body in space, relative to the point O.  Here 𝑟𝑥,  𝑟𝑦,  𝑟𝑧 - are movements along the 

coordinate axes, 𝜔𝑥 ,  𝜔𝑦, 𝜔𝑧 - are rotation angles around the corresponding coordinate axes. 

 

 
 

Fig. 3. Design scheme of body displacements under the action of an applied force, taking into account six 

degrees of freedom [4] 
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Then the total displacement u of point A is made up of a plane-parallel displacement and an 

angular displacement: 

�̅� = �̅� + �̅�      (32) 
 

where the second term describes exactly the angular displacements of the point A: 

 

�̅� = �̅� × �̅�      (33) 
 

Vector �̅� specifies the orientation of point A (point of application of force �̅�) relative to point 

O. It is with respect to this point that the angular displacements of point A are considered: 

 

�̅� = 𝑂𝐴̅̅ ̅̅ = {𝑥 − 𝑥0;  𝑦 − 𝑦0;  𝑧 − 𝑧0}    (34) 

  

The plane-parallel displacement of the point O under the influence of the force �̅�, taking into 

account the compliance of the superimposed bonds, is determined, in accordance with Eqs. (318), as: 

    �̅� = 𝑒�̅�       (35) 

 

where e is the compliance matrix �̅� = (

𝑒𝑥𝑥   𝑒𝑥𝑦   𝑒𝑥𝑧
𝑒𝑦𝑥   𝑒𝑦𝑦   𝑒𝑦𝑧
𝑒𝑧𝑥   𝑒𝑧𝑦   𝑒𝑧𝑧

) 

 

In coordinate form, Eq. (3.329) takes the form: 
 

(

𝑟𝑥
𝑟𝑦
𝑟𝑧
) = (

𝑒𝑥𝑥   𝑒𝑥𝑦   𝑒𝑥𝑧
𝑒𝑦𝑥   𝑒𝑦𝑦   𝑒𝑦𝑧
𝑒𝑧𝑥   𝑒𝑧𝑦   𝑒𝑧𝑧

)(

𝐹𝑥
𝐹𝑦
𝐹𝑧

)     (36) 

 

The rotation angles given by the vector �̅� are determined by the angular compliance matrix. 

𝜉 = (

𝜉𝑥𝑥   𝜉𝑥𝑦   𝜉𝑥𝑧
𝜉𝑦𝑥   𝜉𝑦𝑦   𝜉𝑦𝑧
𝜉𝑧𝑥    𝜉𝑧𝑦   𝜉𝑧𝑧

) The governing Eq. is constructed in the image of the Eq. for plane-parallel 

displacements (18), but instead of force, the moment of force �̅� is involved in it: 
 

    �̅� = �̅� × �̅�      (37) 
 

Then for the rotation of the vector l , which characterizes the orientation of the body in space, 

we obtain, by analogy with (35): 
 

 �̅� = 𝜉�̅� = 𝜉 ∙ (�̅� × �̅�) (38) 
  

In coordinate form, this Eq. has the form: 
 

(

𝜔𝑥
𝜔𝑦
𝜔𝑧
) = (

𝜉𝑥𝑥   𝜉𝑥𝑦   𝜉𝑥𝑧
𝜉𝑦𝑥   𝜉𝑦𝑦   𝜉𝑦𝑧
𝜉𝑧𝑥   𝜉𝑧𝑦   𝜉𝑧𝑧

) |

𝑖                  𝑗                 𝑘
𝑥 − 𝑥0     𝑦 − 𝑦0     𝑧 − 𝑧0

     𝐹𝑥                   𝐹𝑦                    𝐹𝑧          

|  (39) 

  

For the unity of the form of the Eq.s, it is advisable to bring the moment vector M  (37), given 

as a vector product  FR , into a matrix form: 
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|

𝑖                  𝑗                 𝑘
𝑥 − 𝑥0     𝑦 − 𝑦0     𝑧 − 𝑧0

     𝐹𝑥                   𝐹𝑦                    𝐹𝑧          

| = (

0                     − (𝑧 − 𝑧0)          𝑦 − 𝑦0
𝑧 − 𝑧0               0                − (𝑥 − 𝑥0)

−(𝑦 − 𝑦0)         𝑥 − 𝑥0                    0

)(

𝐹𝑥
𝐹𝑦
𝐹𝑧

)    (40) 

 

Then Eq. (39) for the rotation angles is reduced to the form: 

 

(

𝜔𝑥
𝜔𝑦
𝜔𝑧
) = (

𝜉𝑥𝑥   𝜉𝑥𝑦   𝜉𝑥𝑧
𝜉𝑦𝑥   𝜉𝑦𝑦   𝜉𝑦𝑧
𝜉𝑧𝑥   𝜉𝑧𝑦   𝜉𝑧𝑧

)(

0                    − (𝑧 − 𝑧0)          𝑦 − 𝑦0
𝑧 − 𝑧0                0                − (𝑥 − 𝑥0)

−(𝑦 − 𝑦0)         𝑥 − 𝑥0                    0

)(

𝐹𝑥
𝐹𝑦
𝐹𝑧

)  (41) 

 

In folded form, it can be written as: 
 

�̅� = 𝜉𝑎0�̅�      (42) 
 

where a special representation is introduced for the vector OAR   in the form of a matrix: 

 

𝑎0 = (

0                    − (𝑧 − 𝑧0)          𝑦 − 𝑦0
𝑧 − 𝑧0                0                − (𝑥 − 𝑥0)

−(𝑦 − 𝑦0)         𝑥 − 𝑥0                    0

)                           (43) 

 

In accordance with Eq. (43), the angular displacements of the point A, due to the rotation of the 

direction vector 𝑙,̅ are determined as the vector product �̅� × �̅�. If we use the representation of the 

vector �̅� in the form of a matrix 𝑎0 (43), then it is impossible to directly perform the vector 

multiplication �̅� × �̅� (multiplying a vector by a matrix). Therefore, we first determine the opposite 

vector �̅� × �̅� (here, the matrix 𝑎0 is multiplied by the vector �̅�). Taking into account (43), we have 

 �̅� × �̅� = 𝑎0𝜉𝑎0�̅�. Since the relation  �̅� × �̅� = −�̅� × �̅� is valid, expression (33) for the angular 

displacements of the point A will take the form: 
 

�̅� = −𝑎0𝜉𝑎0�̅�      (44) 
 

For the total displacement of point A (plane-parallel displacement r of the base point O and 

displacement   due to rotation around the point O), in accordance with (3.227), we obtain: 
 

�̅� = (𝑒 − 𝑎0𝜉𝑎0)�̅�     (45) 
  

This Eq. describes the elastic displacement of the body from the action of the force �̅� taking 

into account the whole complex of factors characterizing the compliance of the bonds that fix the 

position of the body in space. We can call this movement full-factorial. The matrix e in this Eq. 

characterizes the compliance of the bonds that limit the plane-parallel movement of the body. Then 

the product of three matrices −𝑎0𝜉𝑎0 can be interpreted as the effective angular compliance matrix 

for point A. It characterizes the flexibility of the bonds that limit the angular displacement of point A 

relative to point O. 

Conclusion. Matrix models of machining error in single-tool setups with a spatial arrangement 

of the tool are developed, taking into account the simultaneous action of all components of the cutting 

forces of the setup tool and elastic deformations of the technological system in all coordinate 

directions. These models are developed both in the distortion models of performed dimensions and 

in the scattering field models. A full-factor model of dimension distortion for single-carriage 

adjustment (setup) has been developed, which allows taking into account not only plane-parallel 
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movements of technological subsystems, but also their angular movements around base points. 

Therefore, we believe that Eq. (45) can be used as the basis for a full-factor model of machining error. 

To do this, we first transform the analytical models of the elastic contact interaction of systems of 

bodies (18) to the level of full factorial ones. Analytical models (7), (14,15), (18) and (19) describe 

only plane-parallel displacements of contacting bodies. To take into account the entire range of 

movements in them, i.e. and angular displacements, it is sufficient to replace the plane-parallel 

displacement vectors of each contacting body 𝑟𝑖 with the total displacement vectors 𝑢𝑖. By applying 

the developed models to specific machining schemes, the issues of improving machining quality and 

productivity can be investigated through the management of technological parameters in adjustments 

used in modern CNC machines with wide technological capabilities. Also, within the technological 

capabilities of CNC machines, the issues of researching processing quality and durability of the 

cutting tool with various combinations of technological transitions, developing control matrix models 

of cutting conditions by fulfilling the requirement for the accuracy of dimensions in adjustments can 

be investigated. 
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