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Abstract: The dynamics of a cam mechanism with delays in elasticity and friction is considered, the 

operation of which is supported by an energy source of limited power. The interaction between the cam 

mechanism and the energy source is described by nonlinear equations. To solve these equations, the method 

of direct linearization is used and the equations of non-stationary and stationary motions are derived. 

Relationships are obtained for calculating the stationary values of the amplitude and phase of oscillations, the 

speed of the energy source. A number of calculations have been performed in order to obtain information on 

the effect of delays on the dynamics of the cam mechanism. 
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Introduction. The determination of the parameters of the cam mechanism, taking into 

account its dynamics, is of great importance in the design. The functioning of the cam mechanism is 

supported by an energy source (engine), as a result of which their dynamics are also interconnected. 

Undesirable oscillatory processes that may occur during the operation of the cam mechanism also 

depend on the properties of the energy source that supports its operation. In this context, the well-

known direction of the theory of oscillations comes to the fore, in which the interaction of an 

oscillatory system and an energy source is considered [1-2, etc.].  

As is known [3-13 etc.], the characteristic of internal friction in materials, the imperfection of 

their elastic properties, etc. lead to a delay (hysteresis). It takes place in a number of devices (mills, 

vibrating machines, automatic control systems, conveyors, belt feeders, ball mills, flotation 

machines, drying drums, etc.) and technological processes. The delay leads to a deterioration in the 

dynamics and stability (up to loss) of the system. In this paper, the influence of delays in elasticity 

and friction on the dynamics of the cam mechanism is considered. It consists of an introduction, 

equations and their solutions, calculation results, conclusion.  

Model and equations. In [14], the dynamics of the cam mechanism is considered on the basis 

of the model shown in Fig.1, where a round disk with an eccentricity   acts as a cam. The disk is 

driven by an engine having a torque characteristic  ( )M  ,  where     is the speed of rotation. In 

the friction force arising in contact  1F f N   ( N const  is normal pressure force), the friction 

coefficient  1f   has a nonlinear characteristic 

 

                            
1( ) n

n

n

f x b x ,        nb const ,        n  0, 1, 2, 3, 4, …                       (1)  

 

where  x   is speed of the pusher contact point.  

Function (1) based on the direct linearization method [15, 16] is presented as 

 

                                                     1 ( )f x B kx                                                                     (2)
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n

n n

n

B b S  ,          n  0, 2, 4,…  (n  is even number) 

1n

n n

n

k b S   ,         n  1, 3, 5,…  (n  is odd number) 

 

where  B  and  k  are the linearization coefficients,  max x  ,  (2 1) (2 1)
n

S r r n    ,  

(2 3) (2 2)
n

S r r n    ,  r  is linearization accuracy parameter, which is not limited, but it is 

enough to choose in the interval (0.2). 

 

 
Figure1. System model 

 

The motions of the system under the condition of continuous contact between the disk and the 

pusher are described [14] by the equations 
 

( ) ( , , )mx c x F x     
 

                                                    ( ) ( ) ( , , )I M r F x                                                       (3)  

 

where  
2

0 0 0( , , ) ( ) ( )cos sin
Ty нF x B k x N y c m y k             

 

            0( ) (1 cos )c c    ,  0( ) cos cos2r r         ,  2

04r  ,  0 0y yN B c y  .  
 

In (3), the first equation describes the movement of the pusher, the second - the disk or energy 

source. Here m is the mass of the pusher brought to the point of contact, I is the moment of inertia 

of the disk, taking into account the mass of the rotating parts of the energy source, r()  is the radius 

of the contact point of the disk and the pusher, yB  and  yc  are the linearization coefficients of the 

nonlinear elastic force of the spring 
2 ( ) i

i

i

f y c y , ic const , i  0, 1, 2, 3, 0c ,  , 0r , ,  0y , 
T

m , 

нk   are constant values.  

In the presence of delays in friction  x   and elasticity  x ,  the first equation (3) takes the 

form
                                             

                             0(1 cos ) ( , , )mx k x c x c x F x                                             (4)      

 

where   k const  ,   c const  ,  ( )x x t   ,  ( )x x t   ,  const    and  const    are delays.  
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Equation solutions. The action of the force  ( )c x  can lead to parametric oscillations. They 

are strongly manifested in the regions of parametric resonances, among which the most significant 

is the region of the main parametric resonance, where the ratio of the natural frequency to the 

frequency of the parametric excitation is about  1/2.  Since the parametric excitation frequency is 

formed by the variable  φ,  which can be represented [17] as  ˆ
oscilt   ,  where  ˆ

oscil   are the 

small oscillation components that are not taken into account, then in the region of the main 

parametric resonance     2,  2

0c m    is the natural frequency.   

According to the method of change of variables with averaging [15], solutions (4), taking into 

account the delays  sin( )x p      ,  cos( )x a p


   ,  have the form 

 

                                    cosx a  ,       sinx    ,       pt                                      (5) 

 

which, taking into account 2p  ,  give the following relations for determining the amplitude, 

phase of oscillations and speed of the energy source:  

 

1( sin 2 cos2 )
4

      
da a

kG L
dt m  

 

                                      

11
( cos2 sin 2 )

4


      

d
k G A

dt m
                                           (6) 

 

 0 0( ) ( 0.5 )
1

M B R N G
d

dt I



  

 
 

where   2ap a    ,  1

0 02    нky k c ,  2

0( )
TyG y c m   ,  0 0R r   , 

 

             
02 ( cos ) 4 sin     N k k p c pL ,  22(4 ) 2( sin 2 cos )       A m k p c p .     

 

From (6) for  0a  ,  0  ,  0    we obtain the equations for stationary motions 

 
2 2 2 2 2 2( )  A L k G  

 

                                                  

2 ( ) ( )     tg AkG L LkG A                                                   (7) 
 

( ) ( ) 0M S     
 

where  0 0( ) ( 0.5 )  S B R N G . 
 

The ( )S   expression determines the load on the energy source and the intersection points of 

the  ( )M    and  ( )S    curves give the stationary values of the speed  Ω. 

 

Calculations. Calculations were carried out to obtain information about the effect of lag on 

the dynamics of the cam system. The main design parameters are as follows:  0.02,  0 0.5N  ,  

1
c1  , 0

11 kgf сmс   , 10.05 kgf сmc
  , 

10.02 kgf с сmk
   . The linearization 

coefficients used  
2

3 5S  ,  
3

3 4S  ,  and for delays   p  and   p   values from the interval (0,2). 
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Since the frequency difference is small in the resonance region, the approximate     2   was also 

used.  

For calculations, the friction coefficient is chosen in the form 
 

2 3

1( ) 0.303 0.0624 0.648 0.18   f x x x x
 

 

which is a special case of the characteristic that is widespread [1-2,18-19, etc.] in practice  
3

1 3( ) (1 )T U q U U      where  U V x  ,  q,  V,  1 ,  3   are constants  and  11.2сm сV   . 

 

 
а)  p = 0                                              b)  p =  /2 

                                                          

 
c)  p =                                        d)  p = 3 /2 

 

Figure 2. Amplitude-frequency curves: 

solid curves – c =0,  k =0,  double dotted – p =  /2,    

dashed – p = ,  dash-dotted – p =3 /2.  

 

Fig.2 shows the amplitude-frequency curves  a(Ω)  for different delays. Solid curves 

correspond to the absence of  0c    and  0k    delays,  double dotted curves,  p = / 2,  dashed 

curves,  p =   and dash-dotted curves,  p = 3 / 2. As can be seen from the figures, delays have a 

qualitative and quantitative effect on the amplitude-frequency curves, shift them in the frequency 

domain. 

Conclusion. As follows from the above results, the combined action of various combinations 

of elasticity delay and damping can strongly influence the dynamics of the cam mechanism. 

Depending on various combinations of delay values, the oscillation amplitude undergoes qualitative 

and quantitative changes, the resonance zone can shift in frequency. 
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