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Abstract: The Finite Difference Method (FDM) is one of the most powerful numerical solution 

techniques and has the ability to handle most types of analysis in structural mechanics. In this study, examples 

of physical modeling of vibrational motion of a single-degree-of-freedom-system (SDOF) under the effect of 

a harmonic external load are examined by considering the effects of different system parameters. In its simplest 

form, the problem is represented by a second order differential equation with constant coefficient. The relevant 

equation is solved analytically and at the same time, the compatibility of the results is tested using the finite-

difference method. In addition, the analysis of the beam resting on the elastic foundation is considered. The 

analytical solution of the fourth order differential equation is obtained and the finite-difference method is used 

in order to obtain its numerical solution. Different numerical example problems are considered for the above 

mentioned two problems and the results are tested with the existing literature. 

Keywords: Finite-difference method, Beam-foundation interaction, Vibration, Numerical solution, 

Analytical Solution    
 

Introduction. In numerical analysis, the finite difference approximations of derivatives are 

simple, of rapid convergence and accurate to solve differential equations of which their analytical 

solutions are difficult or impossible to find. Finite difference methods (FDMs) transform partial 

differential equations (pdes) into a system of linear algebraic equations. In the FDMs, discrete 

approximations are used for the derivatives in the differential equation. These approximations are 

derived from the Taylor series expansions. Three of the approximations are Forward, Backward and 

Central differences. Commonly, the central difference formula is used due to fact that it yields better 

accuracy. The error for the central difference difference decreases quadratically as the step size 

decreases whereas for the forward/backward schemes the decrease is linear. The finite difference 

approximations relate the value of the dependent variable at a point in the solution region to its values 

at the neighboring points. The solution region is divided into n subintervals of length “h”. In to get a 

good approximation, step size should be sufficiently small. Large step size increases simulation speed 

in practice, but create instabilities. 

In engineering, beams are fundamental components and are widely used as an accurate and 

simple model for analysis of complex engineering structures. This study aims to investigate the 

analytic and the numerical solution of beam-type structures which are resting on an elastic foundation. 

For numerical solution, the FDM is used. 

The first important studies on the behavior of elastic foundation presented by Winkler [1] in 

1867 and as a result of these studies, Winkler hypothesis has been revealed. The Winkler model is 

most commonly used in practice, since the soil behavior is represented with a very simple approach. 

The general idea of the hypothesis is based on the fact that the foundation consists of infinitely close, 

elastic and linear springs. Under the effect of the uniformly distributed load, the ground reaction force 

is formulated briefly as follows: 

𝑞(𝑧)  =  −𝑘𝑣(𝑧) 
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where the spring coefficient “k” is known as the subgrade reaction coefficient. According to 

this hypothesis, the foundation reaction at any point of the elastic and prismatic beam under the 

influence of various loads is proportional to the deflection value at the same point of the beam under 

consideration. Here, q(z) is the reaction of the elastic foundation and v(z) is the displacement in the 

vertical direction. Assumption of the Winkler hypothesis is that a force acting on the foundation 

causes deformation only at the point where it acts. In other words, Winkler considered the elastic 

foundation as a system of vertical springs that are not affected by each other, are infinitely close to 

each other and can move freely by compression. In Winkler's model, the only parameter that shows 

the character of the foundation is the parameter “k”. For this reason, the Winkler model is also referred 

to as a single parameter foundation model.  

Many beam theories have been developed based on various assumptions. The simplest and the 

most commonly used by researchers is named as Euler-Bernoulli beam theory with the following 

kinematic assumptions: the cross-section is infinitely rigid in its own plane, the cross-section of a 

beam remains plane and normal to the deformed axis of the beam after deformation.  

A large number of studies can be found in the literature on the analysis of beams with various 

theories and geometries. However, during the past two decades, the researcher’s attention has been 

drawn increasingly to the beam-foundation interaction problems. Develi [2] has investigated the 

vibration problem for a finite length of Timoshenko beam on Vlasov foundation and Winkler 

foundation. In this study, the elastic curve function is obtained from the differential equations of the 

beam. Comparison is made for Timoshenko beam and Euler-Bernoulli beam and it is observed that 

the displacement, shear force and bending moment values are close to each other. Eisenberger and 

Bielak [3] have considered externally loaded free-end beams on a two-parameter elastic foundation. 

It has been observed that the interaction with foundation depends on the beam length, the bending 

stiffness of the beam and the foundation stiffness parameters. Ike [4] considered Euler-Bernoulli 

beams on Winkler foundation by the point collocation method. The beams subjected to uniformly 

distributed loads are considered. It is observed that the values of deflection and bending moment at 

the mid-point of the beam decreased with the increase of the subgrade reaction modulus. Doğan [5] 

has examined the homogeneous and non-homogeneous conditions of foundation for weightless 

beams. In the numerical solutions, different loading types and foundation coefficients are considered. 

Sign changes for vertical displacement are observed in the samples examined for tension and 

compression conditions. Karamahmutoğlu [6] focused on the analysis of sheet- pile walls and beams 

on elastic foundation by using the finite-difference method. The Winkler foundation model is used as 

the foundation model. The results are compared with the available examples in the literature. Heteyni 

[7] worked on the Winkler foundation model. In this study, deflection and bending moment values 

are obtained for different points of finite and infinite beams under different loading conditions. 

A further analysis is considered to discuss the dynamic response of a linear single-degree-of-

freedom (SDOF) oscillator. Structures respond to earthquake excitation as either simple or complex 

oscillators. SDOF systems are used to represent the simple oscillators whereas multi-degree-of-

freedom (MDOF) systems are used to represent complex oscillators.The motion of the linear SDOF 

system under harmonic load is solved analytically and also the FDM is used to determine the 

displacement response time histories of linear SDOF systems. Various studies in the earthquake 

engineering literature devoted to the dynamic response analysis of systems under different types of 

dynamic loads [8-12]. 

 

Methodology. 

Central Finite-Difference Method 

The Taylor Series of a real or complex f(z) function with any order derivative, in the range (

,a r a r ), where ‘a’ is a real or complex number, is defined as: 
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If f(z) function is expanded using the Taylor Series at the points zi−1 = zi –Δz and zi+1=zi+Δz, 

the following equations are obtained: 
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These expressions can be arranged as follows: 

                       
2 3 4

2 3 4

1
2! 3! 4!

i i i
i i i

f f f
f f f z z z z     (4) 

                
2 3 4

2 3 4

1
2! 3! 4!

i i i
i i i

f f f
f f f z z z z         (5) 

 

Subtracting (4) from (5) and considering the first three terms on the right, the first derivative 

expression for the zi point is obtained as follows: 
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Again, if the expressions (4) and (5) are added side by side and the first three terms are 

considered, the second derivative expression for the zi point is obtained as follows: 
 

                                             
(2) 1 1

2

2i i i

i

f f f
f

z
                                                          (7)  

Let’s expand the funciton f(z) into the series at the points zi−2 = zi –2Δz and zi+2 = zi +2Δz: 
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The arranged version of these expressions is: 
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The expression (4) is multiplied by (-2), and the expression (5) is multiplied by (+2) and added 

side by side and considering the first five terms: 
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The expression (10) is multiplied by (-1), and the expression (11) by (+1) and summed side by 

side and considering the first five terms: 
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If (12) is subtracted from the expression (2.13), the third derivative expression for the zi point 

is obtained as follows: 
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If (4) and (5) expressions are multiplied by (+4) and summed side by side and the first five 

terms are considered: 
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The expressions (10) and (11) are summed side by side and the first five terms are considered: 
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If (16) is subtracted from (15), the fourth derivative expression for the zi point is obtained as 

follows: 
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Analytical Solution of Euler-Bernoulli Beam on Elastic Foundation 

The fourth-order differential equation for the Euler-Bernoulli beam on the Winkler foundation 

(see Figure 1) can be expressed as:  
 

 

Fig. 1. Beam–elastic foundation interaction 

                                        
4

4x

d v
EI kv z p z

dz
          (18) 

where E is the modulus of elasticity (Young's modulus) of the beam material, Ix is the moment of 

inertia of the section about the x-axis, k is the subgrade reaction coefficient (Winkler's modulus), p(z) 

is the distributed load applied to the beam.  

Firstly, the homogeneous solution of the differential equation is obtained as follows:  
 

1 2 3 4cos cos cos sinz z

hv z e c z c z e c z c zβ β
β β β β  (19) 

where c1, c2, c3 and c4 are integration constants and β is a problem constant in units of (1/m) calculated 

from the following relation:  
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The particular solution depends on the load and it is given as follows for the uniformly 

distributed load:  

p

p
v z

k
                           (21) 

Now the general solution is the sum of the homogeneous and particular solutions as follows:  
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In order to determine the constants c1, c2, c3 and c4, it is necessary to use to the boundary 

conditions of the beam. In a simply supported finite beam with a length of L, the boundary conditions 

can be written as: v(z=0) = 0, v(z=L) = 0 and v(2)(z=0) = 0, v(2)(z=L) = 0. If the boundary conditions 

are adapted to Equation (2.23), the integration constants c1, c2, c3 and c4 can be obtained as follows: 
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When these constants are substituted into Equation (2.23) and simplified, the deflection at the 

mid-point of the beam obtained as follows:  
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    The bending moment at the mid-point of the beam is obtained as follows: 
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Analytical Solution of Forced Vibration of a SDOF 

The mass  “m (in kg)” shown in Figure 2, is connected to both spring and the dashpot, the reaction 

against the external force on the spring increases proportional to the displacement of the body from 

the equilibrium position, meanwhile the reaction at the dashpot increases with the velocity of the 

mass.   

The second-order differential equation for the equation of motion can be expressed as:  
 

mx cx kx F t                 (30) 

In order to obtain the general solution of the differential relation, firstly the homogenous solution 

must be obtained. Let’s rewrite equation (30) by making right hand side equal to zero. For the 

homogenous solution, the below exponential function  is proposed: 
 

tx eλ       (31) 

Substituting this expression and its derivatives yields: 
 

2 0te m c kλ
λ λ                 (32) 

 

 

Fig. 2. Mass-spring-damper system 

where F(t) is a time-dependent force in (N), k is the spring constant in (N/m), and c is the coefficient 

of the dashpot in (Ns/m). 
 

Since 𝑒𝜆𝑡 can never be zero, a solution is possible provided 𝑚𝜆2+𝑐𝜆+𝑘=0. Hence, two values of 

𝜆 are: 

2 2

1,2 2

4

2 2 4

c c mk c c k

m m m m
λ        (33) 

 

Here the value which makes radical in (2.33) equal to zero is called critical damping coefficient, 

𝑐𝑐.  
 

4 2 2c nc mk mk mω        (34) 
 

where n  is the natural circular frequency of vibration; its units are [rad/sec]. There are 3 possible 

combinations of 𝜆1 and 𝜆2 which must be considered. Here, ξ is defined as a damping ratio that is 

given as: 
 

c

c

c
ξ                                        (35) 

 

The cases of damping are categorized via ξ ;  

 ξ>1 or 𝑐>𝑐𝑐 : Overdamped motion. The system turns back to its original position without 

oscillating.  
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 ξ=1 or 𝑐=𝑐𝑐 : Critically damped motion. The system shows tendencies to come to equilibrium 

as quick as possible without oscillating.  

 ξ<1 or 𝑐<𝑐𝑐: Underdamped motion. The system oscillates with a gradual decrements to zero.  

Most engineering structures fall into this category 𝑐<𝑐𝑐. In this study, the system is considered 

as “underdamped”. By considering a relationship between the mass, stiffness and damping ratio, 

revised versions of the equations in terms of the natural circular frequency and damping ratio can be 

formed as follows: 
 

                                                                    22 0nnx x xξω ω                       (36) 
 

and 

2 2

1,2 n n nλ ξω ξω ω             (37) 

or 

2

1,2 1n nλ ξω ω ξ                           (38) 

 

Underdamped condition corresponds to the negative value of the quantity inside the square root 

which means that: 

2

1,2 1n niλ ξω ω ξ                             (39) 

 

where, i is the complex number. And, 21n dω ξ ω . 

Substituting 𝜆1,2 values into 1 2

1 2

t t
x C e C e

λ λ
  where C1 and C2 are arbitrary constants, the 

solution is: 

1 2
n d dt i t i t

x e C e C e
ξ ω ω ω

              (40) 

Equation (2.40) can be written as: 
 

1 2 1 2cos sinnt

d dx e t C C t iC iC
ξω

ω ω      (41) 

by using cos sinie iθ
θ θ . If arbitrary constants are renamed as 𝐵1 = 𝐶1 + 𝐶2 and 𝐵2 = 𝑖𝐶1 − 𝑖𝐶2 

, homogenous part of the solution has become: 
 

1 2cos sinn nt t

h d dx B e t B e t
ξω ξω

ω ω               (42) 

Homogenous solution will die out after a period of time due to friction. Let’s suggest an external 

harmonic force has a form of 𝐹(𝑡) = 𝐹0 sin (Ω𝑡). Here Ω is the angular velocity of mentioned force.  

The form of particular solution is, 
 

sin sinpx A t B tΩ Ω                                      (43) 

By considering time derivatives of  (2.43) and substituting  𝑥𝑝, 𝑥̇𝑝, 𝑥̈𝑝 into the Equation (30) 

results in: 
 

2 2

0sin cos sinAm cB kA t Bm cA kB t F tΩ Ω Ω Ω Ω Ω Ω      (44)   

The coefficients of  sin(Ω𝑡) and cos(Ω𝑡) on each side of the equation must be equal to each other 

as follows: 

0Am cB kA FΩ Ω                                          (45) 
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2 0Bm cA kBΩ Ω          (46) 

As a result:  
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2 22

F k m
A

k m c

Ω

Ω Ω
                 (47) 

0

2 22

F c
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Ω
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                (48) 

Recall, g h px x x   

1 2cos sin sin cosn nt t

d dx t B e t B e t A t B t
ξω ξω

ω ω Ω Ω       (49) 

As  A and B parameters can be determined from known values, only unknowns are 𝐵1 and 𝐵2. 

Let initial conditions of the differential equation are 𝑥(0) = 𝑥(0), and 𝑥̇(0) = 𝑥̇(0)  
 

1 0B x B         (50) 

       2

0 0 n

d

x x B A
B

ξω

ω

Ω
      (51) 

This is the general solution of the forced vibration of SDOF systems.  

 

Numerical Examples and Discussion. 

In this section, the first two examples are considered for the Euler-Bernoulli beam-elastic 

foundation interaction problems. And the last two examples are considered in order to discuss the 

effects of different parameters of the system on the vibration behavior. In order to show the efficiency 

of the FDM numerical solution technique, the analytical results are compared with the results of FDM. 
 

Example 1 

Vertical displacement and bending moment values at the mid-point of a simply supported beam 

under uniformly distributed load and resting on an elastic foundation are calculated analytically and 

the results are compared with the reference study in the literature and the results of FDM. 

Properties of the cross-section of the beam; 

EIx = 1,89 × 106 kNm2 

Foundation parameter; 

k = 6,92 × 103 t/m2 

The comparison results of the deflection and bending moment with the reference study [4] and  

the FDM are presented in Table 1. In order to use the central finite difference method for the solution, 

the beam is divided into four equal sub-intervals. By considering the boundary conditions of the 

simply supported beam, the sets of algebraic equations are constructed and unknowns are calculated. 

The maximum deflection value is also calculated by using the FDM. As seen from the following 

table, the results are close enough. The FDM gives satisfactory results with using large step size and 

saving time. 
 

Table 1.  The values of deflection and bending moment for the mid-point of 

the beam resting on elastic foundation 

 vmax [m] Mmax [kNm] 

Reference Study [4] 1,36 x 10-3 23,9 

Analytical Result 1,42 x 10-3 23,7 

FDM 1,20 x 10-3  
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Example 2 

The variation of the deflection values at the midpoint for different subgrade reaction coefficients 

is discussed. The simply supported beam under the effect of uniformly distributed load resting on the 

elastic foundation is considered. 

Properties of the cross-section of the beam; 

EIx = 1,89 × 106 kNm2 

Foundation parameters; 

k1 = 6 × 103 t/m2  k2 = 12 × 103 t/m2  k3 = 25 × 103 t/m2 

Midpoint deflection values are calculated for three different foundation parameters and the 

results are shown in Table 2. As expected, the deflection values decreased as the foundation stiffness 

increased. 
 

Table 2.  Deflection values for different coefficient of subgrade reaction 

k (t/m2) 6000 12000 25000 

vmax(m) 1,59  10-3 0,89  10-3 0,45  10-3 
 

 

Example 3 
 

The external harmonic force 𝐹(𝑡) = 100 cos (11𝑡) N is applied to a stationary 150 𝑘𝑔 block is 

attached to the wall with the spring which has a 15 𝑘𝑁/𝑚 spring constant and also connected to a 

dashpot which has 150 𝑁𝑠/𝑚 damping coefficient. Show graphically the convergence of FDM at the 

first 10 seconds for different time intervals as: ∆𝑡 = 0.02 , 0.005 𝑠 and ∆𝑡 = (0.1 𝑇) = 0.06283 𝑠.  

Initial conditions are, 𝑥(0) = 𝑥̇(0) = 0   

 

 
Fig. 3. Outputs of numerical solution versus analytic solution for ∆𝑡 = 0.1 𝑇 

 

It is obvious in Figure 3 that ∆𝑡 = 0.1 𝑇  is not enough and time interval must be decreased to 

have better results. Now the analysis is performed for time interval ∆𝑡 = 0.02 𝑠 and it is expected 

that the numerical analysis results to be more precise.  
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Fig. 4. Outputs of numerical solutions versus analytic solution for ∆𝑡 = 0.02 𝑠 

 

When compared to ∆𝑡 = 0.1 𝑇, we can say that the obtained displacements are quite precise as 

expected.  

Although the analytical method gives the result exactly, it is understood that a numerical analysis 

can lead us to almost the same result performing simple analysis. 

 

 
Fig. 5. Outputs of numerical solutions versus analytic solution for ∆𝑡 = 0.005 𝑠 

 

 

Example 4 

This example is considered in order to examine the effect of change in system period (T=1,1.5 

and 2 s.) on the behavior of the vibrating system. In order to change the system’s period, mass is 

going to be constant, but spring constant will change. 
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Fig. 6. Change of displacement for T=1, T=1.5 and T=2 seconds 

 

As we expected, when the period increases, displacements are decreased.  
 

Example 5 

In this example, the behaviour of vibration of the system is analysed for different damping ratios 

as ξ = 0.03, ξ = 0.5 and ξ = 0.9. Let ξ < 1, as we investigated for underdamped system. Here, only 

the parameter 𝑐 will be changed. 

As the damping ratio increases, the amplitude of the vibration motions is decreased. In 

accordance with the definition of damping, increasing the damping coefficient leads to faster damping 

of the system and decreased displacement values. 

 

 
Fig. 7. Effect of different damping ratios as 𝜉 = 0.05, 𝜉 = 0.15 and 𝜉 = 0.9 

 

Conclusion. In this study, Euler-Bernoulli beam resting on elastic foundation is analyzed 

analytically and numerically by using the FDM. The maximum deflection and bending moment 

values are calculated for uniformly loaded simply supported beam and the results are compared with 

the literature. Sufficiently convergent results are obtained. In addition, the deflection values at the 

-0,02

-0,01

-0,01

0,00

0,01

0,01

0,02

0 1 2 3 4 5 6 7 8 9 10

D
is

p
la

ce
m

en
t 

(m
)

Time(s)

T=1 sec T=1.5 sec T=2 sec

-0,04

-0,03

-0,02

-0,01

0,00

0,01

0,02

0,03

0,04

0 2,5 5 7,5 10

D
is

p
la

ce
m

en
t 

(m
)

Time(s)

ξ = 0,05 ξ = 0,15 ξ = 0.9



Gülçin TEKİN, Fethi KADIOĞLU 

Finite difference method for static and dynamic analysis: Euler-Bernoulli beam on Winkler 

foundation and vibrating motion of single degree of freedom system 
 

 

15 

mid-point of the beam are found for different subgrade modulus. As expected, when the subgrade 

reaction coefficient increased, the vertical displacement value at the midpoint of the beam decreased.  

In addition, vibrational motion analysis of a SDOF system under the effect of a harmonic external 

load is examined by considering the effects of different system parameters. An analytical solution of 

the problem is obtained in addition to the its numerical solution. In order to get a good approximation 

in FDM, step size should be sufficiently small. When the period of the system increases due to the 

change of the spring constant, the displacements are decreased as expected. In addition, it is observed 

that the displacements decrease in case the damping ratio increases. 
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