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Abstract: The article examines the dynamic programming method based on the principle of optimality, 
analyzes the theoretical aspects of the method, as well as its use for analyzing a wide range of systems whose 
behavior in the future can be fully or statistically predicted based on their current state. The research results 
suggest that dynamic programming is used to solve a variety of tasks, including, but not limited to, the 
development of algorithms in the fields of machine learning, automated management and the definition of a 
management strategy for production systems. The paper presents aspects of the application of the dynamic 
programming method to solve practical problems of optimal process control, demonstrating its effectiveness 
and versatility in conditions of real operational constraints. 
Keywords: dynamic programming, mathematical model, object control, system behavior. 

Introduction. 
The mathematical description of the technological object determines the formulation and 

methods of solving the optimal control problem. The mathematical model of the control object is 
usually presented in the form of differential equations or systems of equations describing the 
dynamics of changes in the state of the system under the influence of external and internal factors. 
Object management involves the search for such a strategy of influencing the system, which will lead 
to optimal modes of conducting technological operations in accordance with the specified criteria [1, 
2]. The purpose of building a management algorithm is to optimize the operation of an object in 
accordance with specified efficiency criteria [3], which includes minimizing costs, maximizing 
productivity or achieving a certain quality of management [4]. 

The increasing volumes of production systems and their complexity lead to the need to 
formulate tasks for adapting management facilities to changing operating conditions of the facility 
[5], expanding the requirements for its efficiency and reliability. The management of complex 
systems using traditional methods becomes ineffective [6, 7]. Which leads to the need to develop new 
approaches and management methods [8] capable of ensuring high adaptability and optimal behavior 
of the object in real time [9]. To solve this problem, a dynamic programming method is used, which 
allows us to effectively find optimal management strategies based on the Bellman optimality principle 
[10]. To implement effective management, it is necessary to integrate a system with various levels of 
control, from monitoring and analytics to active process management [11, 12]. A systematic approach 
combining data from all levels and subsystems is the basis for managerial decision-making 
  

mailto:artemyevvs@mgupp.ru
mailto:mokrovanv@mgupp.ru
mailto:anar_hajiyev_1991@mail.ru
https://doi.org/10.61413/GIPV6858


Viktor ARTEMYEV, Natalia MOKROVA, Anar HAJIYEV 
Theoretical and practical aspects of the application of the dynamic programming method in optimal 

control problems 
 

 

47 

Formulation of the problem. 
The dynamic programming method is used for a wide class of problems in the theory of optimal 

automatic control systems [13, 14, 15]. 
Consider the problem of controlling an object with the equation 

( )d ,
d
x f x u
t
=                                                                (1) 

where x is an n-dimensional vector with coordinates 1, , nx x… , and u is an r–dimensional vector 

with coordinates 1, , ru u… . Let 

( ) ,u Ф u∈                                                                        (2) 

and it is required to minimize the functional 

( ) ( )
0

, ,
T

Q G x t u t dt =  ∫                                                              (3) 

where, for example, we will consider T fixed for now. 
The dynamic programming method is based on the optimality principle formulated by R. 

Bellman for a wide range of systems whose future behavior is completely or statistically determined 
by their state in the present. Therefore, it does not depend on the nature of their "prehistory", i.e. the 
behavior of the system in the past, as long as the system is currently in this state. 

  

 
Figure 1. Illustration of the optimality principle 

 
To illustrate, consider the optimal trajectory in the n-dimensional phase space of Fig. 1 with the 

initial and final values of the vector x equal to 0x  at 0t t=  (usually 0 0t = ) and ( )T  x  at 0t T t= > . Let 

the initial conditions ( )0x  be given; the value of ( )T  x , generally speaking, is unknown. Note some 
intermediate point x′  of the trajectory corresponding to t t= ′ , where 0t t T< ′ < , and call the section 

of the trajectory from ( )0x  to x′  the first (1) in Fig. 1, and from x′  to ( )T  x  is the second (2). For the 

second section, as an independent trajectory from (3), we get [ ], 
T

t

G x u dt
′
∫ . The trajectory is optimal 

with the minimum value of the integral. The integral is minimal. The principle of optimality can be 
formulated as follows: the second section of the optimal trajectory is, in turn, the optimal trajectory. 
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Thus, the initial state of the system is x′  at the initial moment of time t t= ′ , then regardless of 
how the system came to this state, its optimal subsequent movement will be trajectory 2. Let's assume 
the opposite, then criterion (3), considered for the time interval from t to T, will be the smallest is not 
for trajectory 2, but for some other trajectory 2′ , starting from point x′ , and shown by a dotted line 
in Fig. 1. But in this case, it would be possible to build a "better" trajectory than trajectory 1-2, and 
for the initial task it is only necessary to choose the control u so that trajectory 1 and then 2 are 
described. We proceeded from the optimality of trajectory 1-2. The contradiction proves the 
impossibility of the existence of trajectory 2, providing a lower value of Q than trajectory 2′ . So, 
trajectory 2 is optimal. 

The optimality principle formulated above is a very general prerequisite for an optimal process, 
valid for both continuous and discrete systems. Only in the case when the endpoint is set 'с  from the 
first section at t t= ′ , the first section is also the optimal trajectory in itself. In this case, the state of 
the system at the time under consideration is understood to be the state corresponding to the point x′  
at time t t= ′ . 

Let's say the motion of a controlled object is characterized by a first-order equation 

( )1
d , ,
d
x f x u
t
=                                                              (4) 

where x is the only coordinate of the system, and u is the only control action limited to some 
area (2). Let the initial condition ( ) ( )00x x=  be given. Let's assume that we need to find a control law 

u(t) that minimizes the integral 

( ) ( )
0

T

1 1
t

Q G x,u dt φ , x T = +  ∫                                                       (5) 

where 0t  will usually be considered equal to zero, and the value of Т const= . Let's replace the 
continuous system with a discrete-continuous one from the point of view of convenience of machine 
calculations, as well as determining the class of functions under consideration. The main scope of the 
dynamic programming method lies precisely in the field of discrete-continuous or purely discrete 
systems, or systems approximated to them. 

We divide the interval (0, T) into N equal sections of small length ∆  and consider only the 
discrete values ( )x x k=  and ( )( ) 0,1, ,u u k k N= = …  at time points 

0,1 , 2 , , , –1 ,    ( )t k N N Т= ∆ ∆ … ∆… ∆ ∆= . Then the differential equation (4) of the object can be 
approximately replaced by an equation in finite differences 

( ) ( ) ( ) ( )1

1
, ,

x k x k
f x k u k

+ −
 =  ∆

                                               (6) 

or 

( ) ( ) ( ) ( )1 , ,x k x k f x k u k + = +                                              (7) 

were 

( ) ( ) ( ) ( )1, , .f x k u k f x k u k   = ∆                                                   (8) 

The initial condition remains the same:  
( ) [ ] 0

0
0 .

t
x x x

=
= =                                                             (9) 

The integral (5) is approximately replaced by the sum 
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( ) ( ) ( )
1

0

,
N

n

Q G x k u k x Nϕ
−

=

   = +   ∑                                               (10) 

were 

( ) ( ) ( ) ( )
( ) ( ) ( )

1

1 1

,  ] ,  ,

 

G x k u k G x k u k

x N x N x Tϕ ϕ ϕ

   = ∆  


     = ∆ =      
                                         (11) 

The task is to determine the sequence of discrete values of the control action and, i.e., the values 
u (0) and u (1) ..., u (N – 1) minimizing the sum (10) under conditions (2), (7) and (9). Thus, it is 
required to find the minimum of the function of many variables and the method of dynamic 
programming makes it possible to reduce this operation to a sequence of minimizations of a function 
of one variable. 

We realize the movement from the end of the process, from the moment   t Т= , to its 
beginning. We consider the moment ( )1t N= − ∆ . The values )  0  ( ) , 1 , 2(u i i N= … − , except for the 

last ( )1  u N − , have already been implemented in some way, and some value ( )1x N −  corresponding 

to the moment ( )1t N= − ∆  has been obtained. According to the principle of optimality, the impact 

of ( )1  u N −  does not depend on the "background" of the system and is determined only by the state 

of ( )1x N −  and the purpose of management. Consider the last section of the trajectory from 

( )1t N= − ∆  to t N= ∆ . The value of ( )1  u N −  affects only those terms of the sum (10) that relate 

to this section. Denote the sum of these terms by 1NQ − : 

( ) ( ) ( )1 1 , 1NQ G x N u N x Nϕ−    = − − +                                            (12) 

From (7) we get 

( ) ( ) ( )1 1x N x N f x N = − + −                                                   (13) 

Therefore, ( )x N  also depends on ( )1  u N − . Let's find an acceptable value ( )1  u N −  satisfying 

(13) and minimizing the value 1NQ − . Denote the found minimum value 1NQ −  by 1NS − . This value 

obviously depends on the state of the system at ( ) –  1t N= , i.e. on the value of ( )1x N −  included 

in (12) and (13). So, ( )1 1 1N NS S x N− −  = −  . Let's write an expression for 1NS − : 

( )
( ) ( ) ( ) ( )

( ) ( ) ( ){ }

( ) ( )
( ) ( ) ( ) ( ){ }

N 1 11 1

1

S x N 1 min min 1 , 1

min 1 1 1 , 1

Nu n u u n u

u n u

Q G x N u N x N

G x N x N f x N u N

ω ω

ω

ϕ

ϕ

− −− ∈ − ∈

− ∈

     − = = − − + =     

    = − + − + − −    

       (14) 

To define 1NS −  is required to minimize only the variable ( )1  u N − , 1NS −  we get a function from 

( )1x N − , then fix the resulting value. Let's move on to the penultimate section, considering two 

sections – the last and the penultimate, note that the choice of ( )  – 2u N  and ( )1  u N −  affects only 

the summands (10) included in the expression 

( ) ( ) ( ) ( )2  2 , 2 { [ 1 , ( 1}] }NQ G x N u N G x N u N x Nϕ−    = − − + − − +                      (15) 
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The value ( ) 2x N −  at the initial moment of the penultimate interval, obtained as a result of the 

prehistory of the process, will be considered set. It follows from the principle of optimality that only 
the value of ( ) 2x N −  and the goal of control – minimizing 2  NQ −  – determine optimal control in the 

area under consideration. Let's find the value 1NS −  – the minimum of 2  NQ −  by ( )  – 2u N  and 

( )1  u N − . But the minimum of ( )1  u N −  in (15) has already been found for each value of ( )1x N −

, and the latter depends on ( )  – 2u N . In addition, when minimizing 1NQ − , the corresponding optimal 

value ( )1  u N −  is found along the way; we denote it by ( )*  1 u N − . If you also consider that the rst 

term in (15) does not depend on ( )  – 2u N , we can write: 

( )
( ) ( )
( ) ( )

( ) ( )
( ) ( ) ( ){ }

( ) ( )
( ) ( ) ( ) ( )

2 2 12 2
1

12

 2  min 2 , 2  1

{ 2 , 2  2 , 2 ]}

N N Nu N u u N u
u N u

Nu N u

S x N Q min G x N u N S x N

min G x N u N S f x N u N

ω ω
ω

ω

− − −− ∈ − ∈
− ∈

−− ∈

     − = = − − + − =     

   = − − + − − −   

 

because of (7) implies ( ) ( ) ( ) ( ) 1    2     2 ,  2 . x N x N f х N u N − = − + − −    

Note that the minimization is performed using one variable ( )  – 2u N . In this case, we find 

( )* 2u N −  – the optimal value of u ( )  – 2u N  – and the value N 2S −  – the minimum of the function 

2  NQ − . Both ( )* 2u N −  and N 2S −  are functions of ( ) 2x N − . Now we fix the value of N 2S − . It is 

important to note that the found optimal value ( )* 2u N −  minimizes the entire expression in the curly 

bracket of the formula N 2S − , and not specifically the summand ( ) ( )2 , 2G x N y N − −  . Therefore, 

a strategy in which each value of ( ) u N j−  is chosen by minimizing only a specific term 

( ) ( ), G x N j y N j − −   in the sum (10) is not at all optimal. The optimal strategy takes into account 

the ultimate goal, i.e. minimizing the entire expression in the curly bracket, depending on ( ) u N j− . 

Let's continue the procedure of moving from the end to the beginning of the interval (T, 0). 
Taking into account the third section from the end requires consideration of that part of the sum Q, 
which depends on ( ) 3u N − . Let's denote this part by 3NQ − : 

( ) ( )
( ) ( ) ( ) ( ) ( ){ }

3 3 , 3

2 , 2 1 , 1

NQ G x N u N

G x N u N G x N u N x Nϕ

−  = − − + 

     + − − + − − +     
 

Based on expression (13), we write ( ) ( ) ( ) ( )2   3 3 , 3x N x N f x N u N − = − + − −  .  Next, the 

minimum of the expression in the curly bracket in the expression 3NQ −  is ( )N 2S x N 2−  −  . Therefore, 

the minimum N 3S −  of the expression 3NQ −  is equal to 

( )
( ) ( )

( ) ( ) ( ){ }

( ) ( )
( ) ( ) ( ) ( )

3 23

23

 3 3 , 3  3

{ 3 , 3  3 ,  3 ]}

N Nu N u

Nu N u

S x N min G x N u N S x N

min G x N u N S f x N u N
ω

ω

− −− ∈

−− ∈

     − = − − + − =     

   = − − + − − −   
 

Passing in a similar way to 4 , ,N N kS S− − , we obtain the recurrent formula 
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( )
( ) ( )

( ) ( )

( ) ( ) ( )1

{ , 

  ,   }

N k u N k u

N k

S x N k min G x N k u N k

S x N k f x N k u N k
ω− − ∈

− +

   − = − − +   

   + − + − −   
                              (16) 

In parallel, we determine the optimal value of *u , depending on ( )x N k−  

( ) ( )* *   u N k u x N k − = −                                                         (17)  

And the minimizing expression in curly bracket (16). Calculating by formula (16) sequentially 

N kS −  for  1,  2,  ,k N= … , we come to determine the optimal value of ( )* 0u , i.e. the value of the 

control action required at the initial moment of time. Simultaneously with determining the value of 
( )0u , we obtain 0S , i.e. the minimum value of the criterion Q under optimal control. The analytical 

expression of the minimization results turns out to be impossible; therefore, this procedure is 
performed numerically. The solution process is transferred to an object of any order n with equation 
(1) and any number of control actions ( ) 1, ,lu l r= … . It is only necessary to replace the scalars x, u, 

f in the above formulas with vectors x, u and f. In this case, vectors should be introduced for the kth 
instant of time t k= ∆  

( ) ( ) ( ){ }
( ) ( ) ( ){ }

1

1

, , ,

, , .
n

r

x k x k x k

u k u k u k

 = …


= …
                                                    (18) 

Here ( )ju N k−  is the j-th control action, and ( )jx N k−  is the j-th coordinate at the moment 

( )t N k= − ∆ . 

Let's replace the differential equations (1) with equations in finite differences, and the integral 
(3) with the sum. Then the reasoning, which is completely similar to the above, shows that formula 
(16) is replaced by the expression 

( )
( ) ( )

( ) ( )

( ) ( ) ( )1

{

 }

, 

  ,  

N k u N k u

N k

S x N k min G x N k u N k

S x N k f x N k u N k
ω− − ∈

− +

   − = − − +   

   + − + − −   
                             (19) 

The calculation procedure is similar if in f it clearly depends on time. 
Next, at each stage, we find the minimum of the function r of the variables 

( ) ( )1 , , ru N k u N k− … − , the optimal values are the scalar N kS −  and the vector ( )*u N k−  - the 

essence of the function of the vector ( )x N k− , i.e. the function n variables ( )1 ,( ) , nx n k x n k− … − . 

Dynamic programming is not a solution to any problem, at one time the method was not used 
because of the so-called curse of dimensionality. With the development of computer technology, 
instead of analytical patterns, it became possible to search for solutions in the form of graphs or tables, 
i.e. calculation procedures until the desired result is obtained. The simpler the calculation procedure, 
the better the method. Dynamic programming is characterized by a radical simplification of the 
calculation procedure in comparison with the direct method of solving the problem. Indeed, the 
problem of minimizing the sum (10) can be considered as the problem of minimizing the function of 
N variables ( ) ( ) ( ) 0 , 1 , ,  1 u u u N… − . 

To solve the minimization problem, it is necessary to express each x(k) as a functional 
dependence on all previous control actions ( ) ( )0 ,   1 u u k −  (and initial conditions) using formula (7), 
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i.e. to find a solution for x(k) in general form. As a result of such a replacement, expression (10) will 
become more complicated, and finding the smallest of possibly several minima with a large number 
of variables is also difficult. 

Meanwhile, dynamic programming allows you to replace the minimization of a complex 
function of many variables with a sequence of minimizations. At the same time, in each of the 
minimization processes, the minimum of a much less complex function of one or more variables (n 
variables for an object of the nth order) is determined. Therefore, using dynamic programming, it is 
possible to solve a number of problems that are unsolvable by direct minimization. It does not follow 
from the above that the direct method is always unacceptable, it is applicable with a limited number 
of variables. In general, dynamic programming provides a significant rationalization of calculations 
compared to the direct method. In this case, the solution can be extremely cumbersome. Indeed, at 
each stage of calculations, it is necessary to find and memorize the functions ( ) N kS x−  and ( )1  N kS x− +

, i.e., in general, two functions of n variables. Memorizing such functions for large values of n requires 
a significant amount of memory and in difficult cases is practically achievable only with the help of 
any approximations. 

The described technique is transferred without fundamental changes to optimal systems with 
random processes. To illustrate, let's consider an example in which, in addition to u, a random 
disturbance z acts on an object of the first order. Then equation (7) will be replaced by equality  

( ) ( ) ( ) ( ) ( )1  , ,  x k x k f x k u k z k + = +                                               (20) 

where z(k) are the discrete values of the disturbance. Now x(k) and criterion (10) become 
random variables. Therefore, as a new criterion Q, the value of which needs to be minimized, we 
choose the mathematical expectation of expression (10), and we also introduce z into the number of 
arguments G for generality: 

( ) ( ) ( ) ( )
1

0

, , 
N

n

Q M G x k u k z l x Nϕ
−

=

 
   = +    

 
∑                                        (21) 

Here M is the mathematical expectation. In this example, we will consider the values z(i) and 
z(j) for j to be independent and assume that the densities of distributions 

( ) ] [ ( )) ( )0 , 1 , ... . . . ,  P z P z P z N     are known. Using the proposed method, we first find a function 

for each fixed ( )1x N −  

( )
( ) ( )

( ) ( )
( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

1 11

1

1

1 min

min { 1 , 1 , 1

1 1 , 1 , 1 }

min 1 { 1 , 1 , 1

1 1 , 1 , 1 } 1 . 

N Nu N u

u N u

u N u

S x N Q

M G x N u N z N

x N f x N u N z N

P z N G x N u N z N

x N f x N u N z N dz N

ω

ω

∞

ω
∞

ϕ

ϕ

− −− ∈

− ∈

− ∈
−

 − = 

 − − − + 

  + − + − − − =  

   = − − − − +   

  + − +

=

− − − −  

=

∫

                           (22) 

When minimizing, the optimal value of ( )*u x N k −   is determined simultaneously. Having 

memorized ( )1  1NS x N−  −  , we find the following function 
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( )
( ) ( )

( ) ( ) ( )

( )
( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

2 2

1 2

1

2 min { 2 , 2 , 2

1 } min 2 { 2 , 2 , 12

2 [ 2 , 2 , 2 } 2 .

N u N u

N u N u

N

S x N M G x N u N z N

S x N P z N G x N u N z N

S x N f x n u N z N dz N

ω

∞

ω
∞

− − ∈

− − ∈
−

−

   − = − − − +   

     + − = − − − − +     

 + − + − − − − 

∫        (23) 

The solution methodology turned out to be essentially the same as for regular systems. A similar 
technique is applicable to an object of any order. We can also consider more general problems in 
which ( )Р   z i    are unknown in advance, and some optimal procedure for processing observations 

allows us to accumulate information about the densities of distributions. 

Solution of the problem 
The dynamic programming method, with some additional assumptions, can be applied to the 

study of continuous systems. Let the motion of an object be characterized by the equations 

( )d , , . 
d
x f x u t
t
=                                                         (24) 

At the initial moment of time 0t , the vector x is equal to ( )0x , and the optimality criterion has 
the form,  Т const=  

 ( )
0

 , , d
T

t

Q G x u t t= ∫                                                       (25) 

Let's assume that an optimal trajectory has been found leading from the starting point ( )0x  to 
the end point ( )Tx . The minimum value of the criterion Q corresponding to the optimal trajectory is 

denoted by ( ) ( )( )0 0 , S x t . According to the principle of optimality, the section of the trajectory from 

the point x corresponding to the moment 0t t>  to the endpoint ( )Tx  Fig. 2 is also the optimal 
trajectory, and the part of the criterion Q corresponding to this section and the time interval from t 
to T has the minimum possible value.  

  

 
Figure 2. Illustration of the optimality principle, continuous case 

Let's denote this value by ( ) , S x t t   . Let t∆  be a small period of time, and 

( ) [ ] t , t  , S x t t S x t ′+ ∆ + ∆  ′=  be the minimum value of the part of the integral Q that corresponds 
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to the optimal area trajectories from point ( )tx t x+ ∆ = ′  to the end point ( )Tx  and, consequently, the 

time interval from tt t+ ∆ = ′  to T. The ratio between [ ] , S x t′ ′  and [ ],S x t  is completely analogous 

to formula (19); you just need to write [ ],S x t  instead of ( ) N kS x N k−  −  , [ ] , S x t′ ′  instead of 

( )1  1N kS x N k− +  − +  , finally, ( ) ( ), , G x t u t t t  ∆   instead of ( ) ( ), G x N k u N k − −  . The last 

substitution was made in the first of the equations (11). Since t∆  is a small but finite period of time 
and replacing the differential equation with an expression in finite differences is inaccurate, it is 
necessary to add the expression 10 ( )t∆  to some equality, i.e. the magnitude of the order of smallness 
is higher than t∆ : 

( )1

0

0
0

t

t
Lim

t∆ →

∆
=

∆
                                                             (26) 

Instead of (19) can be written: 

[ ]
( ) ( )

[ ] [ ]{ } ( )1, min , , , 0
u t u

S x t G x u t t S x t t
ω∈

′ ′= ∆ + + ∆                                 (27) 

The dependence of (27) is possible to obtain and regardless of the discrete case discussed 
above. Indeed, according to the definition 

[ ]
( ) ( )

( ) ( ), min , ,     
T

u t u
t

S x t G x u d t T
ω

τ τ τ
∈

= ≤ ≤∫                                     (28) 

Here S is the minimum value of the integral obtained on the set of all permissible controls 
( ) u τ in the range from t to T. The integral (28) can be represented as the sum of two terms 

corresponding to the intervals from t to tt + ∆  and from tt + ∆  to T. Since t∆  is small, you can write 

[ ]
( ) ( )

( ) ( ) ( )1, min [ , , , , ] 0  
T

u t u
t

S x t G x u t t G x u v dv t
ω∈

′

= ∆ + + ∆∫                           (29) 

where t∆  is considered small, and ( )1 0 t∆  is of the order of smallness higher than t∆ . Since 

the first term in the square bracket (29) depends only on the value of u(t) at time t, and only the 
integral in the square bracket also depends on the values of u(v) in the interval of change of v from 

   t t t≠ +∆′  to T, then you can write 

[ ]
( ) ( )

( )
( ) ( )

( ) ( )

( ) ( )
( ) [ ]{ } ( )

1

1

, min [ , , , , ] 0

, , , 0

T

u t u u t u
t

u t u

S x t G x u t t min G x u t dv t

min G x u t t S x t t

ω ω

ω

∈
′

∈

∈
′

=

′

= ∆ + + ∆

= ∆ + + ∆

∫
                  (30) 

Here, under the sign of the minimum is the value u(t) at time t, formulas (30) and (27) coincide. 
Just as in (19), it should be noted that ( ) tx x t= +∆′  depends on u(t). From (24) we find for small 

t∆  

( ) ( ) ( ) ( ) ( ) ( ) ( )2 2    0 , ,   0 ,dxx x t t x t t t х t f x t u t t t t
dt

 = + ∆ = + ∆ + ∆ = + ∆ + ∆ ′              (31) 

where ( )20  t∆  is a value of the highest order of smallness compared to t∆ . Formula (31) is 

similar to expression (17). 
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Now suppose that the function ( )·S  really exists, is continuous and has partial derivatives with 

respect to the variables ( )1, ,ix i n= … , and with respect to t, i.e. all ( )S /   1, .,ix i n∂ ∂ = …  and S /  t∂ ∂  

exist, the validity of the subsequent conclusion depends on the validity of the given assumption. If 
the latter is not justified, then the reasoning is only heuristic in nature. However, there are cases 
when the assumption is unfair, and the application of dynamic programming to continuous systems 
needs, as shown in a number of works, in general, additional justification. 

Substitute the expression  x′  from (31) into formula (27) and decompose [ ] , S x t′ ′  into a Taylor 

series in the vicinity of point (x, t) we get: 
( )

( ) ( ) ( )

[ ] [ ] [ ] [ ] ( )

2

3
1

 [ , ] , 

[ ( { , , 0 ; ]

, ,
, , , 0 ,

n

i
i i

S x t S x t t t t

S x t f x t u t t t t t t

S x t S x t
s x t f x u t t t t

x t=

 = + ∆ + ∆ = 
 = + ∆ + ∆ + ∆ = 

∂ ∂
= + ∆ + ∆ + ∆

∂

′

∂

′

∑

                             (32) 

 where ( )30 t∆  is the value of higher order of smallness compared to t∆ . We can write the 

formula in a more compact, introducing the gradient of the function S(x, t) is a vector with the 
coordinates of ( )/   1, .,iS x i n∂ ∂ = …  

1

  , ,
n

S Sgrad S
x x

 ∂ ∂
= … ∂ ∂ 

                                                     (33) 

Then (32) takes the form 
[ ] ( )

[ ] [ ] ( ) ( ) [ ] ( )3

 , , 

,
,  , , , , 0

S x t S x t t t t

S x t
S x t grad S x t f x t u t t t t t

t

 = +′ ′ ∆ + ∆ =
∂

 = + ∆ + ∆ + ∆  ∂

                     (34) 

Substituting (34) and (27) and taking out the values [ ], S x t  and / ,S t∂ ∂  independent of u(t), 

the formula takes the form: 
[ ]

( ) ( )
( ) ( ) [ ] ( ) ( ){ } ( )4

u t ω u

, 0
 min , ,   , , , ,  

S x t t
G x t u t t grad S x t f x t u t t

t t∈

∂ ∆
   − = + +   ∂ ∆

          (35) 

where ( )40 t∆  is a value of the highest order of smallness compared to t∆ . Now let's aim t∆  

to zero, since ( )40 t∆  obeys condition (26), then the last term in the right part (35) disappears at 

0t∆ → . Therefore, in the limit we get 
[ ]

( ) ( )
( ) ( ) [ ] ( ) ( ){ }

u t ω u

,
 min , ,   , , , ,

S x t
G x t u t t grad S x t f x t u t t

t ∈

∂
   − = +   ∂

               (36) 

Expression (36) is called the Bellman equation and is a partial differential equation. 
To concretize the theoretical calculations, let's look at an example. Let 1r =  and  2n =  be in 

the special case, and 1 2( , )G G x x=  and the only control action is denoted by i. The equations of the 
object are: 

21 2
1 1 2 2,x xf ux x f u

t t
∂ ∂

= = + = =
∂ ∂

                                            (37) 

Then equation (36) takes the form ( [ ],   S x t  replaced by S) 
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 ( ) 2
1 2 1 2

1 2

  min{ ( , )
u

S S SG x x ux x u
t x x

∂ ∂ ∂
− = + + +
∂ ∂ ∂

                                 (38) 

Assuming that 2/  0S x∂ ∂ > , we find the minimum of the curly bracket in u, equating the 
derivative to zero. The optimal value  *u  that minimizes the square bracket we write in the form 

 *
1

1 1

1 1
2 /

Su x
x S x
∂

= −
∂ ∂ ∂

                                                   (39) 

Substituting (39) the expression in equation (38), we obtain the partial differential equation: 

( )
2

2 1
1 2 2 1

1 2

( / ),
4 /

S xS SG x x x x
t x S x

∂ ∂∂ ∂
− = + −
∂ ∂ ∂ ∂

                                     (40) 

The partial differential equation (40) can be solved, since the boundary conditions are known 
for it, S[x,t] is a known function. For example, for criterion (5) it is ( )1 , x Tϕ    , since for 0t T=  the 

integral in (5) is zero. For criterion (25), the function S[x,t] is zero. Knowing the boundary function 
S[x,t], it is possible to integrate equation (40) by some known method. One of the usual methods of 
approximate integration consists in discretizing the problem and solving the resulting recurrence 
relations of the form (19). In some cases, it is possible to find an approximate solution in another 
way or even obtain an exact solution in a closed form. The resulting value of  *u  represents optimal 
control.  

Results and conclusions. 
Based on equation (36), dependence (38) is obtained, which describes the change in the function 

S [x, t] over time depending on the parameters 1x  and 2x , as well as the control parameter u. This 

equation minimizes an expression involving the function 1 2( ),G x x , linear and quadratic terms by u. 
The derivative of u is zero, which makes it possible to find the optimal value of  *u , which minimizes 
this expression, when substituted in (38), we obtain dependence (40), solved under given boundary 
conditions for S [x, t]. The boundary conditions for S [x, t] can be different, depending on the context 
of the problem, as indicated in studies with criteria (5) and (25). Using these conditions, equation (40) 
can be integrated by various methods. One of the most common approaches is the discretization of 
space and time and the subsequent solution of recurrence relations. It is also possible to find an 
approximate or exact solution to the equation in a closed form. 

Finding the optimal control is an important result, since it allows not only to solve the partial 
differential equation, but also to optimize the control process depending on the given conditions and 
parameters of the system [16]. This emphasizes the importance of accurately determining the function 
S [x, t] and its initial or boundary values for the successful application of optimal control methods. 
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