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Abstract: This paper focuses on the systematic type synthesis of parallel robot manipulators by using 
new structural formulas based on the screw theory. New structural formulas as a total number of screw in 
kinematic pairs ($), number of screws with variable pitch �$��, total number of screws that represent the 
contact geometry of lower and higher joint elements (t), mobility equation for robot manipulators (M), 
dimension of the closed loop (λ), motion of end effector of parallel manipulator (m), number degree of 
freedom of kinematic pairs (f), refers to find the kinematic structure of robot manipulators realizing a 
specified motion requirement. Twenty kinematic pairs with structural parameters �$, $� , f, t� are introduced. 
History of six structural formulas using for structural synthesis of parallel robot manipulators from space and 
different subspaces are presented as a table with equations, authors, years and some commentaries. The 
structural synthesis approach is based on the elementary notions of screw theory. Using the proposed of 
structural formulas approach, families of platform manipulators are constructed from a set of structural units. 
This paper is appropriate for engineers with interest in robotics, rovers, space docking parallel manipulators 
and screw theory. 

Keywords: Kinematic pair screws; Motion of end effector; Screws with variable pitch; Dimension of 
closed loop. 
 

Introduction. Structural synthesis of robot manipulators is the fundamental 
concept in robot design. The mobility of robotic mechanical system indicates the 
number of independent input parameters to solve the configuration of robots. If 
mobility of the kinematic chain is equal to zero (𝑀𝑀 = 0) and can not be split into 
several structural groups, we will get a simple structural group. Combining the simple 
platform (with 𝑛𝑛 ≥ 2 kinematic pairs) type structural groups with given actuators, we 
can get parallel platform type robot manipulators needed to define the location 
(position and orientation) of end effectors. Serial platform manipulators control the 
motion of the platform, which are connected each others by hinges, branches, legs 
and other kinematic chains going from the platforms toward the frame. Complex 
robot manipulators consist of independent branches and legs loops with variable 
general constraints {𝜆𝜆𝑘𝑘}26. Many platform type robot manipulators use legs with 
variable general constraints. Therefore structural formulas are used by engineers for 
design the parallel and serial platform Euclidean robot manipulators with variable 
general constraints. Structural synthesis of parallel Cartesian platform robot 
manipulators consists from connecting the simple structural groups constructed in the 
orthogonal planes to actuators and moving platform. 

The history of formulas for structural analysis and synthesis of mechanisms and 
robotic mechanical systems during the second half of the 19th century, the first and 
second half of the 20th century and the beginning of 21st century had been 
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investigated and illustrated in the Table by 38 equations, authors, years and 
commentaries in the fundamental investigations [1] and in a critical review [2]. 
Several investigations are described a systematic approach of structural synthesis and 
analysis of mechanisms by using screw theory. First investigation was given by 
Mueller [3] , where in equations for simple structural group and for kinematic chains 
were used the number of screw in kinematic pairs. Voinea and Atanasiu [4] and 
Waldron [5] introduced mobility equation of mechanisms with rank parameter 
equivalent to screw system of the closed loops. The scientific investigations of 
structural synthesis and analysis of robot manipulators by using screw theory were 
more dedicated in the beginning of  21st  century. Huang and Li [6]  proposed a type 
synthesis of parallel manipulators with mobility {𝑀𝑀𝑖𝑖}35 by using screw theory. Fang 
and Tsai [7] developed a problem of structural synthesis and analysis by applying 
screw theory. They enumerated limb structures for parallel manipulators according to 
reciprocity of limb twist system and wrench system. Jin et.al. [8] are proposed the 
structural synthesis and analysis of parallel manipulators by using screw algebra. The 
design of parallel manipulators based on Plücker coordinates is examined by Gao 
et.al. [9]. An analytical method of using equivalent screw groups for structural 
synthesis of over constrained parallel manipulators is described in the study of  Zhoo 
et.al. [10]. Kong and Gosselin [11 − 14] proposed a new way for the type synthesis 
of parallel manipulators with different type of end effector motions by using screw 
theory and virtual chain approach. 

History of formulas for structural synthesis and analysis of robot manipulators 
given by author at.al. are presented as 6 several equations (formulas 1-6 in Table 1) 
with the unique key controlling parameters. In investigation [15] the mobility 
number, 𝜆𝜆, is a characteristic of an independent loop of robot manipulator. In Table 1 
(formulas ⋕ 1) we have been considered mobility equation which contain mixed 
independent loops with variable general constraint. The history of new formula [16] 
about the number of independent loops was done in Table 1(formulas ⋕ 2). The 
number of independent loops in platform manipulators is described by the number of 
mobile platforms (B), the total number of joints on the mobile platforms (𝑗𝑗𝑏𝑏) and the 
total number of branches between mobile platforms (𝑐𝑐𝑏𝑏). In the paper [17] and in the 
Table 1.1 (formulas ⋕ 3) the number of independent loops is described as 𝐿𝐿 = 𝐶𝐶 − 𝐵𝐵, 
where 𝐶𝐶 = 𝑐𝑐𝑙𝑙 + 𝑐𝑐𝑏𝑏 is sum of legs and branches. A classification of parallel 
manipulators based on the number of mobile platforms, number of joints on the 
mobile platforms, number of legs and branches, and types of kinematic pairs are also 
presented. A new structural formulas for robots (formulas ⋕ 4 in the Table 1), 
working in Cartesian space, having three legs in orthogonal planes, introducing 
simple structural groups in space  𝜆𝜆 = 6 and in subspaces {𝜆𝜆}35, and connected to 
actuators and to the end effector are introduced. Simple serial platform type structural 
groups in 𝜆𝜆 = 3 and 𝜆𝜆 = 6 are presented also in [1]. In the study [18] new structural 
formulas (formulas ⋕ 5 𝑖𝑖𝑛𝑛 𝑡𝑡ℎ𝑒𝑒 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑒𝑒1 ) for parallel and serial platform Euclidean 
robot manipulators with variable general constraints of branch loops and legs were 
presented. Selecting the legs of the robot manipulators as moving dyads on Euclidean 
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planes the direct and inverse task will become easier to solve. The new proposed 
Euclidean manipulators have several legs, which create Euclidean motions on their 
own Euclidean planes.  

 
   Table 1. Structural formulas for synthesis and analysis of robot manipulators. 

№ Equations Authors Commentary 
1 2 3 4 

1. 

1.  𝑀𝑀 = �𝑓𝑓𝑖𝑖

𝑗𝑗

𝑖𝑖=1

−�𝜆𝜆𝑘𝑘

𝐿𝐿

𝑘𝑘=1

 

2.  𝑀𝑀 = �𝑓𝑓𝑖𝑖

𝑗𝑗

𝑖𝑖=1

− 𝜆𝜆𝐿𝐿 

3.  𝑑𝑑 = 6 − 𝜆𝜆  
{𝑑𝑑}04 – general constraint for motion of rigid body 
in space; 
𝐿𝐿 – the number of independent loops; 
𝜆𝜆 – the loop motion parameters; 
𝑓𝑓𝑖𝑖 – the DoF of kinematic pairs; 
𝑗𝑗 – the number of joints. 

 
F. Freudenstain 

and  
R.I. Alizade 
[15] 1975 

1. Mobility equation for 
mechanisms which contain 
mixed independent loops 
with variable general 
constraint. 
2. Mobility equation of 
mechanisms with the same 
number of independent, 
scalar loop closure equations 
in each independent loop. 
𝑀𝑀 is the mobility of 
mechanisms. 
𝜆𝜆𝑘𝑘 is the dimension of the 
active motion space.  

2. 

1.  𝐿𝐿 = 𝑗𝑗𝑏𝑏 − 𝐵𝐵 − 𝐶𝐶𝐵𝐵 

2.  𝑀𝑀 = �𝑓𝑓𝑖𝑖

𝑗𝑗

𝑖𝑖=1

− 𝜆𝜆(𝑗𝑗𝐵𝐵 − 𝐵𝐵 − 𝐶𝐶𝐵𝐵) + 𝑞𝑞 − 𝑗𝑗𝑝𝑝 

3.  �𝑓𝑓𝑖𝑖

𝑗𝑗

𝑖𝑖=1

= 𝜆𝜆(𝑗𝑗𝐵𝐵 − 𝐵𝐵 − 𝐶𝐶𝑏𝑏) 

𝐵𝐵 – the number of mobile platforms; 
𝑗𝑗𝐵𝐵 – the total number of joints on the mobile 
platforms; 
𝐶𝐶𝑏𝑏 – the total number of branches between mobile 
platforms.  

 
R.I. Alizade 
[16] 1988 

1. 𝐿𝐿 is the number of 
independent loops. 
2. 𝑀𝑀 is mobility of 
mechanisms and platform 
manipulators. 
3. Equation for simple 
structural groups {𝜆𝜆}26, 
q is excessive over closing 
constraints, 
𝑗𝑗𝑝𝑝 is number of passive DoF 
in kinematic pairs. 

3. 

1.  𝐿𝐿 = 𝐶𝐶 − 𝐵𝐵 

2.  𝑀𝑀 = �𝑓𝑓𝑖𝑖

𝑗𝑗

𝑖𝑖=1

− 𝜆𝜆(𝐶𝐶 − 𝐵𝐵) 

3.  �𝑓𝑓𝑖𝑖

𝑗𝑗

𝑖𝑖=1

= 𝜆𝜆(𝐶𝐶 − 𝐵𝐵) 

𝐶𝐶 = 𝐶𝐶𝑙𝑙 + 𝐶𝐶𝑏𝑏, parameter 𝐶𝐶 is the sum of legs and 
branches. 
𝐶𝐶𝑙𝑙 = 𝑗𝑗𝐵𝐵 − 2𝐶𝐶𝑏𝑏  
𝐶𝐶𝑙𝑙 – the total number of legs. 

 
R.I. Alizade and 
C. Bayram [17] 

2003 

1. New formula for the 
number of independent 
loops. 
2. Mobility equation of 
platform robot manipulators. 
3. Equation for simple 
structural groups.  
 

4. 

1.  𝑀𝑀 = (𝐵𝐵 − 𝐶𝐶)𝜆𝜆 +�𝑓𝑓𝑖𝑖

𝑗𝑗

𝑖𝑖=1

+ 𝑞𝑞 − 𝑗𝑗𝑝𝑝 

2.  𝑀𝑀 = (𝜆𝜆 + 3) + �(𝑑𝑑𝑙𝑙 − 𝐷𝐷)
𝐶𝐶𝑙𝑙

𝑙𝑙=1

+ �(𝑓𝑓𝑙𝑙 − 𝜆𝜆𝑙𝑙) + 𝑞𝑞 − 𝑗𝑗𝑝𝑝

𝐶𝐶𝑙𝑙

𝑙𝑙=1

 

𝐶𝐶 = 𝐶𝐶𝑙𝑙 + 𝐶𝐶𝑏𝑏 + 𝐶𝐶ℎ 

 
R.I. Alizade, 

C. Bayram and  
E. Gezgin [1] 

2007 

1. Mobility equation for 
robotic systems. 
2. A structural formula of 
mobility loop–legs equation 
for parallel Cartesian 
platform manipulators. 
𝑑𝑑 is the constraint parameter 
of independent loop. 
𝐷𝐷 is the number of  
dimensions of vectors in 
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𝐶𝐶ℎ – the number of hinges; 
𝜆𝜆 = 6 − 𝑑𝑑; 
𝜆𝜆 – the number of independent location parameters 
of rigid body in the independent loop; 
𝑑𝑑𝑙𝑙 – the number of dimensions of vectors in 
subspaces of legs. 
𝑓𝑓𝑙𝑙 – DoF of the kinetic pairs on the leg. 

Cartesian space. 

5. 

1.  𝑀𝑀 = 𝜆𝜆 + 𝑗𝑗ℎ + �(𝑓𝑓𝐿𝐿 − 𝜆𝜆𝐿𝐿)
𝑛𝑛

𝐿𝐿=1

+ �(𝑓𝑓𝑙𝑙 − 𝜆𝜆𝑙𝑙) + 𝑞𝑞 − 𝑗𝑗𝑝𝑝

𝐶𝐶𝑙𝑙

𝑙𝑙=1

 

2.  𝑚𝑚 = 𝜆𝜆 + 𝑐𝑐𝑙𝑙 + 𝑗𝑗ℎ + �(𝑑𝑑𝑙𝑙 − 𝐷𝐷)
𝐶𝐶𝑙𝑙

𝑙𝑙=1

+ �(𝑓𝑓𝐿𝐿 − 𝜆𝜆𝐿𝐿)
𝑛𝑛

𝐿𝐿=1

 

𝑗𝑗ℎ – the number of hinges between platforms; 
𝑓𝑓𝐿𝐿 – DoF of kinematic pair on the branch-loop. 
𝜆𝜆𝐿𝐿 – the motion of rigid body in branch-loop. 

 
Rasim Alizade, 
Fatih Cemal Can, 

Erkin Gezgin 
 [18] 2008 

1. The general structural 
formula of serial-parallel 
Euclidean robot manipulators 
with variable general 
constraints. 
2. The general formula for 
motion of platforms. 
𝐷𝐷 – dimensions of vectors 
(𝐷𝐷 = 3 for space 𝑅𝑅3, 
𝑑𝑑 = 2 for plane 𝑅𝑅2) 

6. 

1.  $ = 𝑓𝑓 − $� + 𝑡𝑡 

2.  𝑀𝑀 = �𝑓𝑓𝑃𝑃𝑓𝑓

𝜆𝜆−1

𝑓𝑓=1

−�𝜆𝜆𝑘𝑘

𝐿𝐿

𝑘𝑘=1

+ 𝑞𝑞  

3.  𝑀𝑀 = �𝑓𝑓𝑃𝑃𝑓𝑓

𝜆𝜆−1

𝑓𝑓=1

− 𝜆𝜆(𝐶𝐶 − 𝐵𝐵) + 𝑞𝑞 

4.𝑀𝑀 = 𝜆𝜆 + ���𝑓𝑓𝑃𝑃𝑓𝑓

𝜆𝜆−1

𝑓𝑓=1

− 𝜆𝜆𝑙𝑙�
𝑐𝑐𝑙𝑙

𝑙𝑙=1

+ ���𝑓𝑓𝑃𝑃𝑓𝑓

𝜆𝜆−1

𝑓𝑓=1

− 𝜆𝜆𝑏𝑏�
𝐿𝐿𝑏𝑏

𝑏𝑏=1

+ 𝑗𝑗ℎ  

5.𝑚𝑚 = 𝜆𝜆 + 𝑐𝑐𝑙𝑙 + 𝑗𝑗ℎ + �(𝑑𝑑𝑙𝑙 − 𝐷𝐷)
𝑐𝑐𝑙𝑙

𝑙𝑙=1

+ ���𝑓𝑓𝑃𝑃𝑓𝑓 − 𝜆𝜆𝑏𝑏

𝜆𝜆−1

𝑓𝑓=1

�
𝐿𝐿𝑏𝑏

𝑏𝑏=1

 

6.𝑀𝑀 = 𝜆𝜆 + ��𝑓𝑓𝑃𝑃𝑓𝑓 − 𝜆𝜆𝑙𝑙

𝜆𝜆−1

𝑓𝑓=1

� 𝑐𝑐𝑙𝑙 + ��𝑓𝑓𝑃𝑃𝑓𝑓 − 𝜆𝜆𝑏𝑏�
𝜆𝜆−1

𝑓𝑓=1

𝐿𝐿𝑏𝑏

+ 𝑗𝑗ℎ 
7.𝑚𝑚 = 𝜆𝜆 + 𝑐𝑐𝑙𝑙 + 𝑗𝑗ℎ + (𝑑𝑑𝑙𝑙 − 𝐷𝐷)𝑐𝑐𝑙𝑙

+ ��𝑓𝑓𝑃𝑃𝑓𝑓

𝜆𝜆−1

𝑓𝑓=1

− 𝜆𝜆𝑏𝑏�𝐿𝐿𝑏𝑏 

𝑡𝑡 – represents the number of screws that describe 
the contact geometry of joint elements.  
𝑡𝑡 = 2 – contact elements on surface; 
𝑡𝑡 = 3 – contact elements on line; 
𝑡𝑡 = 4 – contact elements on points; 

 
Rasim Alizade 

2017 

1. Total screws in kinematic 
pair. 
2. Mobility equation for 
robot manipulators with 
variable loop motion 
parameters. 
3. Mobility equation with the 
same dimension in each 
independent loop. 
4. Structural formula for 
Euclidean platform type 
robot manipulators with 
variable general constraints. 
5. Structural formula that 
describe the motions of end 
effector on the parallel robot 
manipulators. 
6. Mobility equation for 
Euclidean manipulators with 
constant general constraint. 
7. Motion of end effector of 
Euclidean manipulator with 
constant general constraint.  

 
The motion of the platform is defined by three independent curves of three 
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platform points moving on three Euclidean reference planes. The general formula for 
motion of platforms is given also. To create new robot manipulators, simple platform 
structural groups with variable general constraints were considered. 

This study enunciates screw system with variable pitch for the prismatic and 
cylindrical joints. Applying concepts the number of independent screw, number of 
screw with variable pitch, number of screws and motions for lower and higher 
kinematic pairs (Table 1.6.1) become possible to provide the structural characteristics 
of 20 kinematic pairs (Table 2). Two new general mobility equations for robot 
manipulator with mixed and the same dimension of closed loop are presented in the 
work (Table1.6.2 and 1.6.3). 

Applying above mobility equations for structural synthesis problem the new 
wheeled robot that are called as “Rover” had been designed. This rover consists from 
moving platform and two suspensions with six wheels connected to the platform. 
Each suspension consist from paired two Chebyshev lambda mechanisms called 
bogie and one dyad called rocker. Two parallel suspensions are connected by a 
differential gear mechanism (Fig.2). 

The problem of structural synthesis of parallel wheeled rover was solved by 
using structural formulas 3 and 5 from Table 1.6. In current study, new structural 
formulas are introduced for parallel Euclidean plaform robot manipulators (Table1.6) 
with variable and fixed general constraints. Structural synthesis task of four new 
design Eucilidean docking parallel manipulators with three, four, five and six legs 
were solved for spacecraft (Table 3). Furthermore, new 6DoF Euclidean docking 
manipulators of Spacecraft and their structural classification with the same general 
constraints of each legs are presented. Also, in the Table 3 were depicted the 
structural parameters, kinematic structures, motion of platform, number of legs and 
3D drawing of new docking parallel manipulator of Spacecraft. It is clear that the 
6DoF Euclidean parallel manipulator with different number of legs will better 
generate the given position and orientation of moving platform. 

Introduction to screw with variable pitch. The structural and kinematic 
analysis and synthesis problem have been studying with the goal of identified new 
methods for composing robot manipulators capable of performing various prescribed 
positions and orientations of the end effectors. Screw with variable pitch can 
represent the prismatic joint, P, with the variable pitch parameter 𝜇𝜇𝑃𝑃 = ∞, and also 
the cylindrical joint 𝐶𝐶(𝑅𝑅𝑃𝑃) with variable pitch 𝜇𝜇𝐶𝐶 = (∞; 0) that describe a rotation 
motion (𝜇𝜇𝑅𝑅 = 0) and translation motion 𝜇𝜇𝑃𝑃 = ∞. 

As shown in Fig. 1, the location of a rigid body (𝑅𝑅𝐵𝐵) of the cylindrical joint can 
be described by the three parameters for position (𝑥𝑥,𝑦𝑦, 𝑧𝑧) and three independent 
parameters (𝑑𝑑,𝛼𝛼, 𝜃𝜃) for orientation. Let coordinate system A and was then translated 
parallel to the point 𝐵𝐵1 (Fig. 1a). The position of point 𝐵𝐵1 is described by vector 
�̅�𝑟(𝑥𝑥,𝑦𝑦, 𝑧𝑧). Next, the system 𝐵𝐵2 that is initially aligned with system 𝐵𝐵1 is rotated by 
the twist angle 𝛼𝛼 about the 𝑥𝑥𝐵𝐵1  axis. Following this the coordinate system 𝐵𝐵2 of rigid 
body is translated along the 𝑧𝑧𝐵𝐵2 axis by a distance 𝑑𝑑. Lastly the coordinate system 𝐵𝐵 
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that was firstly aligned with the system 𝐵𝐵2 is rotated by the angle 𝜃𝜃 around 𝑧𝑧𝐵𝐵, so we 
will get orientation of the coordinate system 𝐵𝐵𝑥𝑥𝐵𝐵𝑦𝑦𝐵𝐵𝑧𝑧𝐵𝐵. 

Transformation of one coordinate system 𝐵𝐵 to a reference coordinate system 𝐴𝐴 
correspond to the transformation of screw $, when the relative position and 
orientation of the pair of screws are known (Fig. 1a). By using homogeneous 
coordinates the transformation of the system will be represented by 4×4 matrix as: 

 

𝑇𝑇𝐵𝐵𝐴𝐴 = �

1 0 0 𝑥𝑥
0 1 0 𝑦𝑦
0 0 1 𝑧𝑧
0 0 0 1

� �

1 0 0 0
0 𝑐𝑐𝛼𝛼 −𝑠𝑠𝛼𝛼 0
0 𝑠𝑠𝛼𝛼 𝑐𝑐𝛼𝛼 0
0 0 0 1

� �

1 0 0 0
0 1 0 0
0 0 1 �̃�𝑑
0 0 0 1

� �
𝑐𝑐𝜃𝜃� −𝑠𝑠𝜃𝜃� 0 0
𝑠𝑠𝜃𝜃� 𝑐𝑐𝜃𝜃� 0 0
0 0 1 0
0 0 0 1

� = 

= �

𝑐𝑐𝜃𝜃� −𝑠𝑠𝜃𝜃� 0 𝑥𝑥
𝑠𝑠𝜃𝜃�𝑐𝑐𝛼𝛼 𝑐𝑐𝜃𝜃�𝑐𝑐𝛼𝛼 −𝑠𝑠𝛼𝛼 𝑦𝑦 − �̃�𝑑𝑠𝑠𝛼𝛼
𝑠𝑠𝜃𝜃�𝑠𝑠𝛼𝛼 0 𝑐𝑐𝛼𝛼 𝑧𝑧 + �̃�𝑑𝑐𝑐𝛼𝛼

0 0 0 1

�                                 (1) 

 
where: 𝑆𝑆𝜃𝜃 and 𝐶𝐶𝜃𝜃 represent the sine and cosine of 𝜃𝜃, and 𝑆𝑆𝛼𝛼 and 𝐶𝐶𝛼𝛼 represent the 
sine and cosine of 𝛼𝛼. 

Knowledge of these six parameters (𝑥𝑥,𝑦𝑦, 𝑧𝑧,𝛼𝛼,𝑑𝑑,𝜃𝜃) completely defines the 
position and orientation of the 𝐵𝐵 coordinate system attached to the rigid body of the 
cylindrical joint and measured with respect to the 𝐴𝐴 coordinate system as shown in 
Eq.(1). The location of rigid body reduce a single vector 𝑆𝑆̅//�̅�𝑍𝐵𝐵 and a couple moment 
𝑈𝑈�//𝑍𝑍𝐵𝐵1 at point 𝐵𝐵1 with a twist angle 𝛼𝛼 (Fig. 1b). The couple moment 𝑈𝑈� = �̅�𝑟 × 𝑆𝑆̅ 
may be resolved into two components: one 𝑈𝑈�//collinear with joint vector 𝑆𝑆̅ in the 
direction by twist angle 𝛼𝛼. The perpendicular component 𝑈𝑈�⊥ will rotate rigid body 
around cylindrical joint vector 𝑆𝑆̅ by rotation angle 𝜃𝜃, so �̅�𝜃 = 𝜃𝜃𝑆𝑆̅. 

The twist angel 𝛼𝛼 was defined between vectors 𝑆𝑆̅ and 𝑈𝑈� (Fig. 1b) mesured in a 
right-hand sense about �̅�𝑥𝐵𝐵1 . The rotation angle 𝜃𝜃 was defined between �̅�𝑥𝐵𝐵2  and �̅�𝑥𝐵𝐵 
measured in a right hand sense about 𝑆𝑆̅ (Fig. 1a). It is known that, there are two 
distinct angles between 0 and 2𝜋𝜋 that will have the same cosine value. So, the 
expressed for the cosine and sine of 𝛼𝛼 and 𝜃𝜃 can be expressed by Eqs. (2): 

 

�𝑐𝑐𝑐𝑐𝑠𝑠 𝛼𝛼 = 𝑈𝑈 ∙ 𝑆𝑆               
𝑠𝑠𝑖𝑖𝑛𝑛 𝛼𝛼 = �𝑈𝑈 × 𝑆𝑆� ∙ �̅�𝑥𝐵𝐵1

 �
cos 𝜃𝜃 = �̅�𝑥𝐵𝐵 ∙ �̅�𝑥𝐵𝐵2            

sin 𝜃𝜃 = ��̅�𝑥𝐵𝐵 × �̅�𝑥𝐵𝐵2� ∙ �̅�𝑍𝐵𝐵
                           (2) 

 
As shown in Fig. 1, the axes of the cylindrical joint 𝑆𝑆̅ and a couple moment 𝑈𝑈�// 

has the same line. Thus the combination of a collinear vector 𝑆𝑆̅ and a couple moment 
𝑈𝑈�// is called a screw or wrench. 

So, the screw with variable pitch has both a translation 𝑑𝑑 and rotation 𝜃𝜃 about 
the axis 𝑆𝑆̅ described by twist angle 𝛼𝛼. Parameters 𝑑𝑑, 𝜃𝜃 and 𝛼𝛼 are independent 
parameters of rigid body motion respect to screw $� with variable pitch. 

Two collinear vectors 𝑆𝑆̅ and 𝑈𝑈�// uniqually determine the position and orientation 
of the screw with variable pitch. 
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Fig. 1. Kinematic model of cylindrical joint 

 

𝑆𝑆̅ is an axis vector and 𝑈𝑈�// is moment of screw �̃�𝑆, where 𝑆𝑆̅ defines the direction 
of motion of screw $� and moment 𝑈𝑈�// determines the rotation around the axis. Unit 
vector 𝑆𝑆̅ and moment 𝑈𝑈�// can be introduced as dual vector that is called a screw with 
variable pitch: 

$� = 𝑆𝑆̅ + 𝜀𝜀�𝑈𝑈�// + 𝜇𝜇�𝑆𝑆̅�                                                   (3) 
where 𝜀𝜀2 = 0 is operator of Clifford. 

The ratio of joint position d and joint rotation 𝜃𝜃 in cylindrical joint reduce to the 
following variable pitch: 

𝜇𝜇� =
𝑑𝑑
𝜃𝜃                                                             (4) 

As shown in Fig. 1b the rotation moment in cylindrical joint reduce to 
expression as follow: 

𝑈𝑈�// = 𝑈𝑈� ∙ cos𝛼𝛼 = (�̅�𝑟 × 𝑆𝑆̅) cos𝛼𝛼                                       (5) 
Hence, using Eqs. (3 ÷ 5) the vectors 𝑆𝑆̅ and resultant couple moment 𝑈𝑈� 

describing location of a rigid body with cylindrical joint can be descried as a screw 
with variable pitch: 

$� = � 𝑆𝑆
̅                               

(�̅�𝑟 × 𝑆𝑆̅) cos𝛼𝛼 + 𝜇𝜇�𝑆𝑆̅�                                             (6) 

So, as shown in Eq. (6), six independent components (𝑥𝑥,𝑦𝑦, 𝑧𝑧,𝛼𝛼,𝑑𝑑,𝜃𝜃) describe 
the location of screw with variable pitch. As shown in Eq. (7) the couple moment 𝑈𝑈� 
of the screw with variable pitch is: 

𝑈𝑈� = (�̅�𝑟 × 𝑆𝑆̅) cos𝛼𝛼 + 𝜇𝜇�𝑆𝑆̅                                           (7) 
Since the screw axis and its moment are in orthogonal planes and unit of screw 

with variable pitch �$�� = 1, so 
𝑆𝑆̅ ∙ (�̅�𝑟 × 𝑆𝑆̅) = 0     and    𝑆𝑆̅ ∙ 𝑆𝑆̅ = 1                         (8) 

Multiplying both side of Eq.(7) to the vector 𝑆𝑆̅ we get the following equation: 

𝑆𝑆̅ ∙ 𝑈𝑈� = (�̅�𝑟 × 𝑆𝑆̅) ∙ 𝑆𝑆̅ cos𝛼𝛼 + 𝜇𝜇�𝑆𝑆̅ ∙ 𝑆𝑆̅    𝑐𝑐𝑟𝑟     𝜇𝜇� =
𝑆𝑆̅ ∙ 𝑈𝑈�
𝑆𝑆̅ ∙ 𝑆𝑆̅

                      (9) 
For revolute, prismatic, screw and cylindrical joints the parameters of pitch to 

Eq.(8) can be described as follows: 

𝜇𝜇𝑅𝑅 = 0, 𝜇𝜇$ =
𝑑𝑑
𝜃𝜃 ,      𝜇𝜇�𝑝𝑝 = ∞,    𝜇𝜇�𝐶𝐶 = {0,∞}. 
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Structural formulas for robot manipulators by using screw theory. The 
design problem of robot manipulators are a valuable task for structural synthesis. It is 
known that over constraint robot manipulator must satisfy the geometry of angular 
and linear constraints that correspond to the geometry of kinematic pairs moving in 
subspaces. The goal of structural synthesis by using screw theory are identified new 
methods for composing robot manipulators capable of performing various prescribed 
functions, position and orientations of end effectors. It is required to form a new 
structural formula for robot manipulators by using screw theory allows to solve the 
structural synthesis with variable general constraints including platforms, hinges, legs 
and branch loops with different ranks, that is introduced from different subspaces and 
spaces. 

It is known that two rigid bodies attached to each other by surfaces are formed 
lower kinematic pairs, otherwise if contact geometry of two rigid bodies is line or a 
point are formed higher kinematic pairs. Due to the fact that the unconstraint space 
has dimension 𝜆𝜆 = 6 with independent motions 3R3P, but dimension of over 
constraint subspaces is 𝜆𝜆 = 2 ÷ 5 with different angular and linear or just angular 
conditions in the loops of robot manipulators. Usually kinematic pairs need 
constraints 𝑐𝑐 = 1 ÷ 5 in order to be defined properly degree of freedom 𝑓𝑓 = 𝜆𝜆 − 𝑐𝑐. 
Each kinematic pair has input and output link screws and joint independent screws $ 
with constant pitch 𝜇𝜇, however some joints with translation motions has additional 
variable screws $� with variable pitch 𝜇𝜇�.  

The simple planar surface can be represented by two parallel screws $1$2 or two 
orthogonal screws $1⊥$2, so for lower kinematic pairs number of screws 𝑡𝑡 = 2. The 
intersection of two planar surfaces $1$2 and $2$3 will be result in a line represented 

by $1$2$3 or as $1⊥$2⊥$3 so for higher kinematic pair with line contact of elements the 
number of screws 𝑡𝑡 = 3. The intersection of three planar surfaces that will be result 
in a point can be represented by four screws $1$2$3 → $2⊥$4 or as $1⊥$2⊥$3⊥$4, so for 
higher kinematic pair with point contact of elements the number of screws 𝑡𝑡 = 4. 
Elements of the structural bonds can be illustrated as " " describe the parallel of 
screws and “ ⊥ ” describe the perpendicular of screws.  
 

Table 2 Joints kinematic parameters. 

№ Name Symbol 
Kinematic parameters 

Diagram 
t f $� $ 

1 2 3 4 5 6 7 8 

1 Revolute 𝑅𝑅 2 1 0 3 
 

2 Prismatic 𝑃𝑃 3 1 1 3 
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3 Screw 𝐻𝐻 2 1 0 3 
 

4 Cylindrical 𝐶𝐶 2 2 1 3 

 

5 Sphere with finger 𝑆𝑆𝑓𝑓 2 2 0 4 
 

6 Spherical 𝑆𝑆 2 3 0 5 
 

7 Sphere in cylinder 
slot 𝑆𝑆𝑐𝑐𝑐𝑐 3 4 1 6 

 

8 Sphere in 
torus slot 𝑆𝑆𝑡𝑡𝑐𝑐 3 4 0 7 

 

9 Plane to slope line 𝐹𝐹/𝐿𝐿 4 4 1 7 

 

10 Plane to 
perpendicular line 𝐹𝐹⊥𝐿𝐿 4 3 1 6 

 

11 Plane to parallel lines 𝐹𝐹//𝐿𝐿 3 4 2 5 
 

12 Line to Sphere 𝐿𝐿𝑆𝑆 4 4 1 7 

 

13 Cylinder to plane 𝐶𝐶𝐹𝐹 3 4 2 5 

 

14 Cylinder to torus 𝐶𝐶𝑡𝑡 4 4 1 7 
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15 Sphere to plane 𝑆𝑆𝐹𝐹 4 5 2 7 

 

16 Hyperboloid to Sphere 𝐻𝐻𝑐𝑐 4 5 2 7 

 

17 Sphere to Torus 𝑆𝑆𝑡𝑡 4 5 2 7 

 

18 Torus to plane 𝑇𝑇𝐹𝐹  4 5 2 7 

 

19 Torus to torus 𝑇𝑇𝑡𝑡 4 5 2 7 

 

20 Sphere to sphere 𝑆𝑆𝑐𝑐 4 5 2 7 

 
 

The usage of recurrent screws in the study of kinematic pairs can clarify the 
motion concept easily. From this point of view the number of independent screws in 
kinematic pairs can be introduced as follow: 

$ = 𝑓𝑓 − $� + 𝑡𝑡                                                           (9) 
where: 
$� = number of screws with variable pitch; 
𝑡𝑡 = number of screws of lower (𝑡𝑡 = 2) or higher kinematic pairs (𝑡𝑡 = 3 for line and 
𝑡𝑡 = 4 for point contact of elements); 
𝑓𝑓 = degrees of freedom of relative motion permitted at joint. 

The twenty kinematic pairs of robot manipulators in all types, symbols, 
kinematic parameters and their diagrams are shown in Table 2. Using Eq.(9) and 
(1.1) from Table 1 we can introduce a new general mobility equation for mechanisms 
with mixed dimensions of closed loops as: 

𝑀𝑀 = �𝑓𝑓𝑃𝑃𝑓𝑓

𝜆𝜆−1

𝑓𝑓=1

−�𝜆𝜆𝑘𝑘

𝐿𝐿

𝑘𝑘=1

+ 𝑞𝑞                                            (10) 

where: 𝜆𝜆𝑘𝑘 = number of independent, scalar, loop closure equations associated with k-
th independent loop; 
𝑃𝑃𝑓𝑓 is the number of 𝑓𝑓 mobility joints. 𝑓𝑓 = $ + $� − 𝑡𝑡 is DoF at joint;  
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𝑞𝑞 = number of depended constraint equations. 
As show in Table 1, the number of independent loops 𝐿𝐿 = 𝑐𝑐 − 𝐵𝐵, so mobility 

Eq. (10) can be introduced as mobility equation for robot manipulators with the same 
number of independent, scalar loop closure equation in each independent loop:  

𝑀𝑀 = �𝑓𝑓𝑃𝑃𝑓𝑓

𝜆𝜆−1

𝑓𝑓=1

− 𝜆𝜆(𝐶𝐶 − 𝐵𝐵) + 𝑞𝑞                             (11) 

where: 𝐶𝐶 = 𝑐𝑐𝑙𝑙 + 𝑐𝑐𝑏𝑏 is the sum of legs and branches; 
   𝐵𝐵 = number of mobile platforms. 

The overall performance of robots and rovers are usually constructed from the 
multiple platforms, hinges leg and branch loops with variable general constraint 
parameters, describing the location of rigid body. These robots and rovers can be 
affected by the topology of their possible mechanical structures. The motions 
(rotation and translation) of rigid links and platforms of the manipulators could be 
described in space 𝑅𝑅3 and in plane 𝑅𝑅2 with dimensions of vectors 𝐷𝐷 = 3 and 𝐷𝐷 = 2 
in reference frame respectively. The location of rigid body in the three dimensional 
space  𝑅𝑅3 can be obtain by Euclidean motions of the two dimensional subspaces  𝑅𝑅2. 
It is known that the location of rigid body in space 𝑅𝑅3 can be determined minimum 
by three independent curves of the three points of moving rigid body. Let there are 
dyads kinematic chains on each Euclidean “3 ≤ 𝑝𝑝𝑇𝑇𝑇𝑇𝑛𝑛𝑒𝑒𝑠𝑠 ≤ 6”. If these kinematic 
chains of Euclidean planes are joined to the moving rigid body by spherical or 
spherical-torus kinematic pairs, so we will attain location of the rigid body in the 
three dimensional space 𝑅𝑅3. 

The general structural formula for parallel-serial Euclidean platform type 
manipulators with variable general constraints [18] including hinges (𝑗𝑗ℎ), leg (𝑇𝑇) and 
branch (𝐿𝐿𝑏𝑏) loops can be also formulated in the form as (Table 1): 

𝑀𝑀 = 𝜆𝜆 + ���𝑓𝑓𝑃𝑃𝑓𝑓

𝜆𝜆−1

𝑓𝑓=1

− 𝜆𝜆𝑙𝑙�
𝑐𝑐𝑙𝑙

𝑙𝑙=1

+ ���𝑓𝑓𝑃𝑃𝑓𝑓

𝜆𝜆−1

𝑓𝑓=1

− 𝜆𝜆𝑏𝑏�
𝐿𝐿𝑏𝑏

𝑏𝑏=1

+ 𝑗𝑗ℎ                 (12) 

where: 𝜆𝜆 is the dimension parameter of moving platform; 𝜆𝜆𝑙𝑙 and 𝜆𝜆𝑏𝑏 are dimension 
parameters of leg and branch loops; 𝑗𝑗ℎ is the number of hinges between platforms. 

The structural formula for motion [18] of platforms that are created by 
mechanical system from different Euclidean planes can be introduced in the 
following form (table 1): 

𝑚𝑚 = 𝜆𝜆 + 𝑐𝑐𝑙𝑙 + 𝑗𝑗ℎ + �(𝑑𝑑𝑙𝑙 − 𝐷𝐷)
𝑐𝑐𝑙𝑙

𝑙𝑙=1

+ ���𝑓𝑓𝑃𝑃𝑓𝑓 − 𝜆𝜆𝑏𝑏

𝜆𝜆−1

𝑓𝑓=1

�
𝐿𝐿𝑏𝑏

𝑏𝑏=1

                     (13) 

where 𝑑𝑑𝑙𝑙 is the number of dimensions of vectors of the legs in Euclidean planes; 
D is the number of dimensions of vectors in the reference frame. 
If the number of independent scalar leg-closure equations identical in each 

Euclidean planes and identical in each branch loops, the general structural formula 
(12) for Euclidian manipulators can be defined as 
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𝑀𝑀 = 𝜆𝜆 + ��𝑓𝑓𝑃𝑃𝑓𝑓 − 𝜆𝜆𝑙𝑙

𝜆𝜆−1

𝑓𝑓=1

� 𝑐𝑐𝑙𝑙 + ��𝑓𝑓𝑃𝑃𝑓𝑓 − 𝜆𝜆𝑏𝑏�
𝜆𝜆−1

𝑓𝑓=1

𝐿𝐿𝑏𝑏 + 𝑗𝑗ℎ                 (14) 

The general formula for motion of end effector of manipulator (13) with the 
same dimensions of Euclidean manipulator legs and branch-loops can be given in the 
following from: 

𝑚𝑚 = 𝜆𝜆 + 𝑐𝑐𝑙𝑙 + 𝑗𝑗ℎ + (𝑑𝑑𝑙𝑙 − 𝐷𝐷)𝑐𝑐𝑙𝑙 + ��𝑓𝑓𝑃𝑃𝑓𝑓

𝜆𝜆−1

𝑓𝑓=1

− 𝜆𝜆𝑏𝑏�𝐿𝐿𝑏𝑏                 (15). 

 
Structural Synthesis of 6DoF Parallel Docking Manipulator of Spacecraft. 

In space flights the orbital docking system is used. The use of an orbital station with 
two docking units ensures a rigid connection with the formation of a hermetically 
sealed tunnel. A large number of interacting mechanisms are concentrated in the 
docking aggregates. The multi-functionality of the working bodies requires the 
solution of the problem of the structural synthesis of spatial manipulators of coupling 
aggregates. Since the mechanisms operate in open space, it is therefore necessary to 
develop new manipulators, nodes and elements of kinematic pairs. Structural 
parameters, kinematic structure, motion of platform and 3D drawing of the spaces 
docking manipulators 6𝑅𝑅𝑅𝑅𝑆𝑆𝑡𝑡 is depicted in Table 3. Controllable space vehicles are 
brought to a touch with a certain speed and position, after which the process of 
docking with a spatial manipulator of a parallel structure begins, which ends with a 
rigid connection of two docking units. After the end of the flight, an undocking takes 
place by releasing the mechanical connections of the docking device of the platform 
manipulator from the orbital station (Table 3.1). 

When docking it is required that the coaxial position of the docking assemblies 
and the zero linear and angular velocities be maintained. The possible values of the 
relative coordinates and their first derivatives in the case of mechanical contact are 
called the initial conditions of the docking. Deviations from the co-axial position 
(Table 3.2) are determined by the linear coordinates 𝛿𝛿𝑦𝑦, 𝛿𝛿𝑧𝑧 and planar angles 𝛿𝛿𝜓𝜓, 𝛿𝛿𝜑𝜑, 
𝛿𝛿𝜃𝜃. The total deviations of the docking units from the co-axial position are added 
from the errors: unit settings, measurements and control dynamics. 
Electromechanical docking devices have been created to reduce errors based on 
electromechanical dampers. With the damping, the brake robot can accelerate in a 
unit of millisecond to a speed of several thousand revolutions per minute. 

The new four proposed Euclidean docking manipulators have identical legs as 
plane dyads RR as shown in Table 3.3a. Each end of dyads connect to the moving 
platform by spherical-tours pairs. Kinematic pair with 4DoF is introduced as sphere 
in torus slot pair 𝑆𝑆𝑡𝑡𝑐𝑐 that perform three rotations and one circular translation (Table 
3.3 b). Note that, end points of each dyads respect to the fixed reference frame (Table 
3.3 c) define the curve of one point of the platform in the reference Euclidean plane. 
Three legs 𝑅𝑅𝑅𝑅𝑆𝑆𝑡𝑡𝑐𝑐 of the moving platform defines the three reference Euclidean planes 
(Table 3.3 c) that are located under an angle of 120°. It is known that the location of 
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the moving rigid body in space can be defined by minimum three independent curves 
of three rigid body points moving on three Euclidean reference planes. 

Since the Euclidean parallel docking manipulator consist of a movable platform 
and legs, then the number of branch-loops 𝐿𝐿𝑏𝑏 = 0, hinges 𝑗𝑗ℎ = 0 and 𝜆𝜆𝑙𝑙 = 𝑐𝑐𝑐𝑐𝑛𝑛𝑠𝑠𝑡𝑡, so 
Eq. (14) takes the form: 

𝑀𝑀 = 𝜆𝜆 + ��𝑓𝑓𝑃𝑃𝑓𝑓 − 𝜆𝜆𝑙𝑙

𝜆𝜆−1

𝑓𝑓=1

� 𝑐𝑐𝑙𝑙                                        (16) 

In the same way when 𝐿𝐿𝑏𝑏 = 0, 𝑗𝑗ℎ = 0 and 𝑑𝑑𝑙𝑙 = 𝑐𝑐𝑐𝑐𝑛𝑛𝑠𝑠𝑡𝑡, then the formula (15) for 
motion of platform of Euclidean docking manipulator can be written in the form 

𝑚𝑚 = 𝜆𝜆 + (1 + 𝑑𝑑𝑙𝑙 − 𝐷𝐷)𝑐𝑐𝑙𝑙                                      (17) 
Example 1. Design a parallel Euclidean docking robot manipulator with 𝜆𝜆 = 6, 

𝜆𝜆𝑙𝑙 = 6, 𝑐𝑐𝑙𝑙 = 6, 𝑀𝑀 = 6. Find both the number and kind of kinematic pairs on each 
leg. Also, find the motion of docking platform. 

By using Eq.(16) total DoF and kind of kinematic pairs of the legs can be 
calculated as 

(𝑀𝑀− 𝜆𝜆)𝑐𝑐𝑙𝑙−1 + 𝜆𝜆𝑙𝑙 = �𝑓𝑓𝑃𝑃𝑓𝑓

5

𝑓𝑓=1

  𝑐𝑐𝑟𝑟  

  6 = 𝑃𝑃1 + 4𝑃𝑃4,    𝑐𝑐𝑟𝑟     𝑃𝑃1 = 2 𝑇𝑇𝑛𝑛𝑑𝑑  𝑃𝑃4 = 1 
so that, in the designed docking manipulator, each leg will consist of two kinematic 
pairs with one degrees of freedom (revolute pairs RR) and one kinematic pair with 
four degrees of freedom (sphere in torus slot pair 𝑆𝑆𝑡𝑡𝑐𝑐). By using Eq.(17), the motion 
of the docking platform will be 𝑚𝑚 = 6, it means motion of platform will 𝑅𝑅𝑥𝑥, 𝑅𝑅𝑦𝑦, 𝑅𝑅𝑧𝑧, 
𝑃𝑃𝑥𝑥, 𝑃𝑃𝑦𝑦, 𝑃𝑃𝑧𝑧. 

Kinematic structure with different structural parameters of Euclidean docking 
robot manipulator with six legs is shown in Table 3.1. 

The above procedure can be used for Euclidean docking robot manipulators with 
three, four and five legs. 

The result of the new Euclidean docking robot manipulators are shown in Table 
4. Elements of the structural bonds can be illustrated as: Restangle (▭): 
 

Table 3. Parallel Euclidean Platform Spacecraft Docking Manipulator. 
 

№ The new Spatial Docking Manipulator of Spacecraft. 

1 
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𝑅𝑅𝑥𝑥, 𝑅𝑅𝑦𝑦, 𝑅𝑅𝑧𝑧, 
𝑃𝑃𝑥𝑥, 𝑃𝑃𝑦𝑦, 𝑃𝑃𝑧𝑧 

𝛼𝛼 
 

60° 

𝜆𝜆𝑙𝑙 
 

6 

𝑐𝑐𝑙𝑙 
 

6 

leg. 
𝑃𝑃1 = 2 
𝑃𝑃4 = 1 

𝑑𝑑𝑙𝑙 
2,2,2 
2,2,2 

𝑚𝑚𝑝𝑝 
 

6 

𝑀𝑀 
 

6 
1 2 3 4 5 6 7 8 9 

 The Deviations of the Docking Units. 

2 

 

 a Dyad in reference 
Euclidean plane. b Sphere in torus slot pair c The three platform points on 

three Euclidean planes. 

3 

 
𝑅𝑅𝑅𝑅 

 
𝑆𝑆𝑡𝑡   

 
Table 4. New 6DoF Parallel Docking Manipulators of Spacecraft. 

Structural bonding 

Illustration 

Motion of 
platform 

Angle 
between 

Euclidean 
planes 

𝜆𝜆𝑙𝑙 𝑐𝑐𝑙𝑙 
leg. 

�𝑓𝑓𝑃𝑃𝑓𝑓 𝑑𝑑𝑙𝑙 𝑚𝑚𝑝𝑝 𝑀𝑀 

1 2 3 4 5 6 7 8 9 

 

𝑅𝑅𝑥𝑥, 𝑅𝑅𝑦𝑦, 𝑅𝑅𝑧𝑧, 𝑃𝑃𝑥𝑥, 
𝑃𝑃𝑦𝑦, 𝑃𝑃𝑧𝑧 120° 6 3 𝑃𝑃1 = 2 

𝑃𝑃4 = 1 2,2,2 6 6 

1 2 3 4 5 6 7 8 9 

1 

 



Rasim ALIZADE  
Structural synthesis of robot manipulators by using screw with variable pitch 

 

29 

1 2 3 4 5 6 7 8 9 

 

𝑅𝑅𝑥𝑥, 𝑅𝑅𝑦𝑦, 𝑅𝑅𝑧𝑧, 𝑃𝑃𝑥𝑥, 
𝑃𝑃𝑦𝑦, 𝑃𝑃𝑧𝑧 90° 6 4 𝑃𝑃1 = 2 

𝑃𝑃4 = 1 
2,2,2, 

2 6 6 

2 

 

1 2 3 4 5 6 7 8 9 

 

𝑅𝑅𝑥𝑥, 𝑅𝑅𝑦𝑦, 𝑅𝑅𝑧𝑧, 𝑃𝑃𝑥𝑥, 
𝑃𝑃𝑦𝑦, 𝑃𝑃𝑧𝑧 72° 6 5 𝑃𝑃1 = 2 

𝑃𝑃4 = 1 
2,2,2, 

2,2 6 6 

3 

 

 
describes moving platform with spherical-torus pairs 𝑆𝑆𝑡𝑡. 

Platform leg (−,∟): connection of the spherical-torus pairs on the moving 
platform with pairs of the legs. 

: input joint on fixed frame. 
𝑅𝑅: input joint on moving frame.   
Structural Synthesis of Wheeled Robots. It is obvious that wheeled robot have 

been developed for Mars and Moon surface. First we consider the definition of 
wheeled robot: “A wheeled robot is an autonomous system capable of traveling a 
terrain with natural or artificial obstacles”. As shown in Fig. 2.1 kinematic structure 
of wheeled robot has six wheels with symmetric structure for both sides. Each side 
has three wheels which are connected to each other by the main linkage and two 
loops kinematic chain. Main linkage called rocker that has two joints, where first 
joint connected to back wheel and second joint assembled to platform. The rocker is 
kinematic chain where the second path of link connected rigidly to another linkage 
system with two wheels. The second linkage system is called bogie (Fig. 2.2). So, 
rocker-bogie kinematic chain is called suspension system. Wheeled rough terrain 
mobile robots are called as “Rover”. Rovers can carry more weight with high-speed, 
easy novigation and more precisely can be calculated position and orientation. First 
rover was “Lunakhod” and second rover was six wheeled syspension system, which 
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connects the wheels to the platform. This connection are linkage mechanisms, 
damping and complex spring. 

The new bogie mechanism consists of two Chebyshev lambda mechanisms 
which are connected symmetrically. Paired two lambda mechanisms are used as 
motion generation mechanisms, where couplers are input links. To move the coupler 
points 𝑀𝑀1 and 𝑀𝑀2 along a line sufficiently and necessary to fulfil the design relation: 
3𝑑𝑑 − 𝑇𝑇 = 2𝑇𝑇. The length of parametre 𝑑𝑑 can be changed according to relation 
1,55𝑇𝑇 ≤ 𝑑𝑑 ≤ 3𝑇𝑇 (Fig. 2.1).  The same second suspension kinematic chains are 
assembled in opposite side of moving platform. Right and left suspensions are 
connected to each other by a differential gear mechanism (Fig. 2). When one side 
climbing over obstacle, this mechanism rotates the platform around the rocker joints 
by average angle of two sides (Fig. 2.1). So, the wheeled robot is equipped with six 
wheels and possibly a manipulator setup mounted on the platform for handling of 
work pieces, tools or special devices. On inclined surface the moving rover can hold 
the main plarform horizontal. Navigation gets easier by this feature of rover. Rovers 
are driven by commands which are sent from ground operators after tested in 3𝐷𝐷 
computer simulation. Some of the critical motions such as climbing high slope, new 
rover designs are needed to more flexible duaring field operation. 

Example 2. Design a parallel wheeld rover with six legs 𝑐𝑐𝑙𝑙 = 6, three branch 
𝑐𝑐𝑏𝑏 = 3 and one moving platform 𝐵𝐵 = 1 (Fig. 2.1). The dimension parameter of each 
independent loops on the left and right suspensions {𝜆𝜆𝑘𝑘}18 = 3 (Fig. 2.2). The number 
of kinematic pairs with one DoF in the left and right suspensions 𝑃𝑃1 = 30. Two 
suspensions kinematic chains are connected by differential gear mechanism. Find the 
number of motors for parallel whelled rover. Also, find the motion of the rover’s 
platform.  

First, we define the number of independent loops (Table 1.3): 
𝐿𝐿 = 𝐶𝐶 − 𝐵𝐵 = 𝑐𝑐𝑙𝑙 + 𝑐𝑐𝑏𝑏 − 𝐵𝐵 = 6 + 3 − 1 = 8. 

Using Eq. (11) total DoF of parallel wheeled rover can be calculated as 

𝑀𝑀 = �𝑓𝑓
5

𝑓𝑓=1

𝑃𝑃𝑓𝑓 − 𝜆𝜆(𝐶𝐶 − 𝐵𝐵) = 𝑃𝑃1 − 𝜆𝜆(𝑐𝑐𝑙𝑙 + 𝑐𝑐𝑏𝑏 − 𝐵𝐵) = 

= 30 − 3(6 + 3 − 1) = 6. 
By using Eq.(17), the motion of the moving rover’s platform can be defined as 

𝑚𝑚 = 𝜆𝜆 + (1 + 𝑑𝑑𝑙𝑙 − 𝐷𝐷)𝑐𝑐𝑙𝑙 = 6 + (1 + 2 − 3) = 6. 
Thus, the problem of the structural synthesis of the wheeled rocker-bogie 

mechanism is solved and it is introduced in Fig.2. Spring and damper application to 
double lambda bogie good solution for high-speed off-road vehicles. 

Rocker-Bogie suspensions can be used also for vehicles with a larger number of 
wheels. An example of a layout for an 8-wheeler each suspension will consist from 
four motion generation Chebyshev lamda mechanisms with the four given wheels. İn 
this case the vehicle may be summetrical and it can run in both direction without any 
difference. 
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№  

1 

 
 1 2 3 

2 

   

 
Fig. 2. Kinematic model of rocker-bogey mechanism. 

 
Conclusion. The problem of structural synthesis of the robot manipulators with 

variable general constraint of the legs and closed loops can be difficult and complex 
task depends on the DoF and motion of an end-effector concept. It is described a new 
structural formula of kinematic pairs for robot manipulators by using screw with 
variable pitch. From this point the twenty kinematic pairs are shown with types, 
simbols, kinematic screw parameters and their diagrams. It were introduced two new 
general mobility equations for mechanisms with mixed or fixed dimensions of close 
loops. The general structural formula for Euclidean manipulators with variable or 
identical general constraints are introduced. The new structural formula for motion of 
end effector of robot with legs from different Euclidean planes were considered. Four 
new Euclidean 6DoF parallel docking manipulators of Spacecraft were reviewed and 
synthesized. Funally, by using sistematic process of structural synthesis by using for 
mobility of robot and motion of moving platform were developed to create new 
structure of wheeled robot-rover for Mars and Moon surface. 
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