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Abstract. There are many methods of identifying general stability of complex dynamic systems. 

Routh and Hurwitz’s criterion is one of the earliest and commonly used analytical tools analysing stability of 

a dynamic system. However, it requires redundant calculation of all the elements of the Routh array to 

identify stability, even the low-order system. Therefore, it is not a simple method to identify, especially 

analytically, the stability boundaries for the coefficients of the characteristic equation due to tedious and 

lengthy derivation of all the Routh array elements. The proposed brand-new criterion or algorithm is an 

effective alternative and a universal technique to identify analytically the stability of up to sixth-order linear 

time-invariant dynamic system based on the set of unique for all possible system equations (2) and (3) that 

relate coefficients of the system characteristic polynomial at the stability boundaries by means of a single 

additional constant k. The expressions derived on this basis for a higher-order dynamic system can be used 

effectively to identify the boundaries of its stable behaviour spans. It defines the necessary and sufficient 

conditions for absolute stability of higher-order dynamic systems. It also allows the analysing of the system’s 

precise marginal stability condition (whether stable or not) and the nature of the system roots at the stability 

boundaries, i.e. when they are relocated on imaginary jω-axis of s-plane. The criterion proposed by the 

authors, in contrast to Routh criteria, simplifies significantly the identification of maximum and minimum 

stability limits for any coefficient of the higher-order characteristic equation. The paper also presents the 

numerical analysis of stability boundaries for systems with order higher than six based on criteria (2) or (3). 

The derived stability boundary formulas (2) and (3) for the polynomial coefficients are successfully used for 

PID controller gains selection in close-loop control systems and this achievement does not have analogy in 

control theory. 

Keywords: higher-order dynamics, characteristic polynomial, stability boundaries, absolute and 

marginal stability.   

  

Introduction. The research on stability of higher-order systems was initiated by Edward 

Routh and Adolf Hurwitz long ago, their theory is being used now by control experts while 

analysing stability of dynamic systems and added to many books on control engineering [1-4]. It 

provides an effective tool for identifying stability condition dynamic system and roots of its system 

polynomial on the jω-axis of s-plane.  However, it does not provide an effective method for 

identifying precise stability  limits of higher-order system operation in analytical or numerical way 

by mathematically analysing the coefficients of the system characteristic polynomial. Deriving 

analytical expressions based on the Routh array is a very tedious and lengthy process. It becomes 

formidable task for systems with order higher than four. Besides, for special cases of all zeros in an 

array raw, the use of standard Routh procedure does not provide solution to the problem.  

Some researchers have managed to solve specific system stability problems by using the 

Routh-Hurwitz criterion. In paper [5], the authors use the Hermite-Biehler theorem to derive Routh-

Hurwitz criterion and managed to capture the system’s unstable root counting. While performing 

stability analysis the Routh array may suffer some singularities. One example is when the first 

element of a row turns out to be zero. The solution to this case was discussed in some papers [5, 6, 

and 7] and textbooks [1-4]. Some researchers have used the ϵ-method to solve the stability problem 

for the special case when there are zero leftmost elements together with an all-zero row in the Routh 
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array [6]. A minor reconstruction of Routh’s array is presented in [7] to solve a special case of 

leading array elements in the array becoming zero. In reconstructed array, locations of of a 

polynomial root are defined by means of considering first-column sign changes, similar to Routh’s 

method, which eliminates the necessity of implementing the ϵ-approach.  

The singularity in Routh array may also occur in case where all elements of a row become zero. In 

[8], the authors have presented a solution for the roots of a polynomial in the right-half of s-plane 

and on the jω-axis for the case when a few elements of a row in the Routh array become zero. They 

have used the continued fraction approach to solve the problem. When a system parameter is of the 

ϵ-order, the advantage of the ϵ-method of the Routh-Hurwitz criterion for the zero row was 

elaborated in [9]. In [10], authors have replaced zero row coefficients with the derivative of the 

polynomial corresponding to the row next to the zero-row to fill the row as an additional procedure 

and doing that they have succeeded in identifying the location of the symmetric roots of the 

polynomial on the right and left and/or on the jω-axis. [7].  

Importantly, the Routh-Hurwitz criterion unable to determine the case of instability for the 

case of multiple roots on the jω-axis of the s-plane [2, 4, and 11]. Routh array does not provide 

solution for the number of jω-axis roots with multiplicity greater than unless solving it with the 

auxiliary polynomial. Moreover, Routh’s array does not show sign change in the first column of the 

array for some unstable systems with repeated multiple roots on jω-axis even by applying the 

auxiliary polynomial procedure, i.e. indicating that there are no roots of the system polynomials in 

the right half s-plane [11].  In [10], the authors are managed to count the number of roots on jω-axis 

that are complex polynomials. The authors in [12] have investigated possible relation between the 

multiplicity of jω-axis poles and the numbers of zero rows in the Routh array. The main outcome 

was a prove that existence of more than one zero row in the Routh array is a source of instability of 

the system regardless of any sign change in the first column. In paper [13], authors have aimed for 

modelling and analysis of cyclic physical phenomenon and investigated harmonic oscillations of 

higher-order systems at the borders of stability regions. Stability boundary oscillations are used in 

many science and engineering applications [13]. The authors in [14, 15] conducted boundary locus 

analysis to achieve a stable control system design. The authors identified stability regions of 

controller coefficients based on a solution of characteristic polynomial equation in s domain for 

s=jω. In the research paper [13], the authors have identified the harmonic oscillation boundary of 

systems by mapping the roots of the characteristic polynomial to amplitude-angle (𝑀 − 𝜃) plane 

and presenting roots of polynomial in the form of λ  = 𝑀𝑒𝑗𝜃. 

Another common method of n-th order systems stability studies is related to analysing 

numerical eigenvalues of of n state equations [16, 17]. However, it does not simplify the solution of 

the problem for n-th order system, the dimensions of a matrix of eigenvalues and matrix A, i.e (λI-

A), are of the same n-th order. Therefore, the level of complexity of stability problem solution is 

similar to analysing roots of the original n-th order system characteristic polynomial. In other 

words, it requires  calculation numerically the roots λ of n-th order polynomial to verify stability of 

a given system and therefore analytical solution of the problem is not possible.     

The literature review has shown that so far there is no any systematic and exact solution for 

stability problem of linear higher-order dynamic systems that is able to identify exact stability 

boundaries of system behaviour in terms of the coefficients of its characteristic polynomial and 

doing that is able thoroughly analyse and differentiate marginal stability or instability of systems at 

the boundary regions of stability.   The importance of such theory could also contribute to closed-

loop controllers design and selection of controller gains for real dynamic systems. The closed-loop 

controller gains are part of the system characteristic polynomial coefficients and, therefore, stability 

limits of the coefficients can be used, in turn, to identify stability limits for the gains. The method 

described in this paper aims to solve these problems. In addition, it can precisely define the number 

and types of conjugate roots on the jω-axis of the s-plane while dynamic system is at the stability 
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boundary region and their influence on marginal stability or instability for some special cases of 

zero coefficients. 

The new theory of stability was initially introduced in [18]. However, current paper in section 

II introduces a completely modified systematic and more simple approach for identifying stability 

of higher-order linear time-invariant dynamic systems with only two polynomials as an alternative 

to the renowned Routh-Hurwitz criterion and any other method. The discovered criterion and 

algorithms for system stability has no analogy to other criteria published so far in the field of 

stability control. The algorithms in this paper have been developed intuitively based on certain 

systematic relations of the coefficients of characteristic polynomial at the boundaries of stability 

and they are undoubtedly and successfully worked with all higher-order dynamic systems either 

with randomly selected coefficients of characteristic polynomials or randomly selected engineering 

applications with closed-loop controllers. The presented method is a simple and the only available 

procedure to identify the stability boundaries of the coefficients of a higher-order system 

characteristic polynomial. The difficulty of achieving the same objective by using the Routh has 

been discussed in section III for a sixth-order system. The presented algorithms are essential tools to 

identify marginal stability or instability of the systems for the case of multiple roots of the 

polynomials on jω-axis of the s-plane. Section III discusses in details and set the rules to identify 

stability boundaries for third-order, fourth-order, fifth-order and sixth-order dynamic systems in 

analytical form. The paper presents separate rules for absolute and marginal stability of systems 

when the multiple roots occur on the jω -axis of the s-plane. Section IV also presents the numerical 

technique to identify stability boundaries for the dynamic systems with orders higher than six when 

it was difficult to derive analytical solution for the problem. For all the systems analysed in this 

paper, the boundary limits of lowest order dependent coefficients of characteristic polynomial  𝑎0  

as a function of other coefficients were determined. Section V demonstrate the use of the developed 

theory for defining of stability limits for the gains of closed loop controllers for various engineering 

systems with higher-order dynamic models. 
 

Presentation of general stability criteria. In general the characteristic polynomial for 

higher-order dynamic system can be presented as follows: 
 

𝑎𝑛𝑠𝑛 + 𝑎𝑛−1𝑠𝑛−1 + 𝑎𝑛−2 𝑠
𝑛−2 + ⋯ + 𝑎1𝑠 + 𝑎0 = 0                          (1) 

 

One of the conditions of possible stability is that all the coefficients of the polynomial must be 

positive real numbers [2.3]. However, positive values of the coefficients alone do not provide 

stability of the system. The current paper presents stability criteria of the higher-order systems 

system with all positive values coefficients as well as when some coefficients having zero values 

which leads to special cases of marginal stability or instability.  

The general necessary stability criteria for any n-order dynamic system (where n ≥ 3) can be 

uniquely expressed by the set of two non-linear algebraic equations (2) or (3) with introduction of 

an additional unknown variable 𝑘 that couples both equations together. If the highest order of the 

system n is an odd number then two equations are presented, as follows: 
 

𝑎𝑛 = (𝑎𝑛−2 − (𝑎𝑛−4 − ⋯ − (𝑎3 − 𝑎1𝑘)𝑘) … )𝑘                                    (2) 

𝑎𝑛−1 = (𝑎𝑛−3 − (𝑎𝑛−5 − ⋯ − (𝑎2 − 𝑎0𝑘)𝑘) … )𝑘 
 

If the highest order of the system n is an even number then two equations are presented 

differently, as follows: 

 

𝑎𝑛 = (𝑎𝑛−2 − (𝑎𝑛−4 − ⋯ − (𝑎2 − 𝑎0𝑘)𝑘) … )𝑘                                    (3) 

𝑎𝑛−1 = (𝑎𝑛−3 − (𝑎𝑛−5 − ⋯ − (𝑎3 − 𝑎1𝑘)𝑘) … )𝑘 
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It can be seen from (2) and (3) that unknown parameter k must be a real positive number to 

ensure that coefficients 𝑎𝑛 and 𝑎𝑛−1 are positive real numbers which is obvious stability condition 

for the system.  

The fundamental law of marginal or boundary stability of any dynamic system with order 

𝑛 ≥3 is stated as follows: “if equations (2) or (3) are satisfied and there exists solution of these 

equations with at least one common k as a positive real root, then all the coefficients in (1) are 

having stability boundary values and the system under consideration is in the state of marginal or 

boundary stability condition”. At this state some of the roots of characteristic polynomial (1) form 

conjugate pairs and strictly located on the imaginary jω-axis of the s-plane. Therefore, (2) or (3) 

represent the necessary and sufficient criteria to define accurately stability boundary value for all 

the coefficient of dynamic system characteristic polynomial with order 𝑛 ≥3, provided algebraic 

equations (2) or (3) have at least one common positive real solutions for k. In other words, if 

conditions (2) or (3) satisfy, then the dynamic system is in the state of marginal stability or 

instability, i.e. it is exactly in between the stable and unstable zones of behaviour. The boundary 

values for the coefficients of n-th order system (1) can be obtained by mathematically excluding 

unknown k from both equations (2) or (3). The newly developed expressions (2) or (3) have no 

similarity to any stability criteria published so far in the literature. The relationship between the 

coefficients of the characteristic polynomial at the state of system stability boundary regions has 

been discovered intuitively but can be verified by any other method that describes stability 

boundary conditions for a dynamic system. 

The lowest order of the system to be solved with (2) or (3) is n=3. For this 3rd order system 

(odd order), expression (2) can be expressed as follows: 
 

𝑎3 = (𝑎1)𝑘  an    𝑎2 = (𝑎0)𝑘 
 

Excluding k from both equations can lead to the stability boundary expression for the third order 

system, i.e. 𝑎2/𝑎0 = 𝑎3/𝑎1. This system is fully stable if the following inequality is satisfied: 
 

𝑎2

𝑎0
≥  

𝑎3

𝑎1
                                                                                 (4) 

 

The equal sign means a marginal stability of the system with one pair of roots symmetrically 

located on the jω-axis of the s-plane. The validity of (4) can be verified by using other methods 

such as Routh criteria and root-locus method.  
 

Analytical solution for the stability boundaries for up to sixth-order systems. 
 

a. Stability criterion for the fourth-order dynamic system  

The system is presented by the following characteristic polynomial: 
 

𝑎4𝑠4 + 𝑎3 𝑠
3 + 𝑎2 𝑠

2 + 𝑎1 𝑠
1 + 𝑎0 = 0                                 (5) 

 

Since the highest order of the system n=4, i.e. it is an even number, equations (3) were used to 

describe the boundary conditions for the polynomial (5).  
 

𝑎4 = (𝑎2 − 𝑎0𝑘)𝑘                                                                  (6) 

𝑎3 = (𝑎1)𝑘                                                                             (7) 
 

According to the newly developed fundamental law of boundary stability condition of any 

dynamic system with with order 𝑛 ≥3, values of k in (6) and (7) must be real positive numbers. 

Solving (6) and (7) for k leads to the following results: 
 

𝑘 =
(𝑎2 ± √𝑎2

2 − 4𝑎0𝑎4)

2𝑎0
;      𝑘 =

𝑎3

𝑎1
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From these expressions part of the necessary boundary stability conditions for the system (5) 

can be derived.  For k to be positive real number the following conditions must satisfy: 
 

𝑎2
2 ≥ 4𝑎0𝑎4;  𝑎1 ≠ 0; 𝑎3 ≠ 0                                                (8) 

 

Excluding k from both (6) and (7) and some algebra leads to the following single necessary 

boundary or marginal stability expression for the coefficients of (5):  
 

𝑎0𝑎3
2 = (𝑎2𝑎3 − 𝑎1𝑎4)𝑎1                                                       (9) 

 

For 𝑎0 to have positive non-zero value the following necessary boundary stability condition 

must be satisfied: 
 

𝑎2𝑎3 > 𝑎1𝑎4                                                                (10) 
 

As a conclusion, it can be stated that (9) presents the necessary and sufficient boundary or 

marginal stability expression for the coefficients of (5) provided (8) and (9) are fully satisfied. The 

analysis shows that when the coefficients reach their stability boundary values, the system becomes 

marginally stable with two (i.e. one pair of conjugate complex numbers) out of four roots located 

symmetrically on jω-axis of the s-plane.  

For comparison and prove of validity for (9), the expressions of the Routh array elements (two 

columns with five rows) for the fourth-order system were presented. The final equation in the first 

column of the Routh array can be presented as follows: 
  

𝑎1 −
𝑎3𝑎0

𝐴
= 0                                                                        (11) 

 

Substituting A=(𝑎2𝑎3 − 𝑎1𝑎4)/𝑎3 into (11), the same expression (9) can be derived. 

Therefore, Routh method solution serves as an ‘elementary’ prove of validity for the proposed 

stability criteria (3). 

The expression (9) can be easily used to define the boundary values of any coefficient of the 

characteristic equation (5). For example, for this system to be absolutely stable, 𝑎0 must be within 

the range in between its minimum and maximum boundary values, as it was defined from (9): 
 

0 < 𝑎0 <
(𝑎2𝑎3 − 𝑎1𝑎4)𝑎1

𝑎3
2

                                                         (12) 

 

 
 

Figure 1 Marginally stable system  
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Figure 2 Marginally unstable system  

 

In accordance to (9), in the case 𝑎1 = 𝑎3 = 0, i.e. when (9) yields 0=0, the following special 

case of marginal stability or marginal instability when all four roots of polynomial are located on 

jω -axis of the s-plane has been derived. If  𝑎1 = 𝑎3 = 0, the system becomes marginally stable and 

its characteristic polynomial will have all four roots (in this case two different pairs of conjugate 

complex numbers) symmetrically located on jω-axis of the s-plane if 𝑎2
2 > 4𝑎0𝑎4, or if still  𝑎1 =

𝑎3 = 0, the system becomes marginally unstable and its characteristic polynomial will have all four 

roots (in this case two repeated pairs of conjugate complex numbers) symmetrically located on jω-

axis of the s-plane if 𝑎2
2 = 4𝑎0𝑎4. This special case marginal stability is a unique case when the 

same condition of coefficients 𝑎1 = 𝑎3 = 0 lead to two different behaviour of the 4th order system 

and different type of roots of the polynomial (5) depending of the values of its remaining 

coefficients.  

The example of a system polynomial that has marginal stability is 𝑠4 + 3𝑠2 + 2 = 0 and Fig. 

1 shows response of this system to the unity input. The example of a system polynomial that has 

marginal instability is 𝑠4 + 4𝑠2 + 4 = 0 and Fig. 2 shows response of this system to the unity 

input. The difference in both system responses with the same condition for the coefficients 𝑎1 =
𝑎3 = 0 can be seen clearly in Fig. 1 and Fig. 2. This unique condition of marginal stability or 

instability was not identified by using the Routh method of stability analysis.  

 

b. Stability criterion for the fifth-order dynamic system  

 

The system is presented by the following characteristic polynomial: 

 

𝑎5𝑠5 + 𝑎4𝑠4 + 𝑎3 𝑠
3 + 𝑎2 𝑠

2 + 𝑎1𝑠 + 𝑎0 = 0                         (13) 

 

Solving the boundary problem for a system polynomial (10) coefficients can be done by 

taking n=5 (odd number) in (2). It leads to the following two non-linear equations: 
 

𝑎5 = (𝑎3 − 𝑎1𝑘)𝑘                                                                (14) 
 

𝑎4 = (𝑎2 − 𝑎0𝑘)𝑘                                                                (15)                                                       
 

According to the newly developed fundamental law of boundary stability condition of any 

dynamic system with with order 𝑛 ≥3, values of k in (14) and (15) must be real positive numbers. 

Solving (14) and (7) for k leads to the following results: 
 

 

𝑘 =
(𝑎3 ± √𝑎3

2 − 4𝑎1𝑎5)

2𝑎1
;   𝑘 =

(𝑎2 ± √𝑎2
2 − 4𝑎0𝑎4)

2𝑎0
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From these expressions the necessary and sufficient boundary stability conditions for the 

system (13) can be derived.  For k to be positive real number the following conditions for all six 

coefficients must satisfy: 
 

𝑎3
2 ≥ 4𝑎1𝑎5;  𝑎2

2 ≥ 4𝑎0𝑎4                                                    (16) 
 

Excluding k from both (14) and (15) and some algebra leads to the following single necessary 

boundary or marginal stability expression for the coefficients of (13): 
 

(𝑎1𝑎4 − 𝑎0𝑎5 )2= (𝑎1𝑎2−𝑎0𝑎3 )(𝑎3𝑎4 − 𝑎2𝑎5)                            (17) 
 

Expression (17) requires the following additional conditions to be satisfied: 
  

 𝑎 1𝑎2 > 𝑎0𝑎3 𝑎𝑛𝑑 𝑎3𝑎4 > 𝑎2𝑎5                                       (18) 
 

As a conclusion, it can be stated that (17) presents the necessary and sufficient boundary or 

marginal stability expression for the coefficients of (13) provided conditions (16) and (18) are fully 

satisfied. The analysis shows that when the coefficients reach their stability boundary values, the 

system becomes marginally stable with two (i.e. one pair of conjugate complex numbers) out of five 

roots located symmetrically on jω-axis of the s-plane and with one of the roots (negative real 

number) located on the real axis of the s-plane. In this case, the expressions (14) and (15) have only 

one common real positive root k. 

The expression (17) can be easily used to define the boundary values of any coefficient of the 

characteristic equation (13). For example, for this system to be absolutely stable, 𝑎0 must be within 

the range in between its minimum and maximum boundary values, as it was defined from (13): 
 

𝑎0
𝑚𝑖𝑛 =

(𝑎2𝑎5 − 𝑎3𝑎 4) (𝑎3 + √𝑎3
2 − 4𝑎1𝑎5) + 2𝑎1𝑎 4𝑎 5

2𝑎5
2

                      (19) 

 

𝑎0
𝑚𝑎𝑥  =   

(𝑎2𝑎5 − 𝑎3𝑎 4) (𝑎3 − √𝑎3
2 − 4𝑎1𝑎5) + 2𝑎1𝑎 4𝑎 5

2𝑎5
2

                      (20) 

 
 

If equation (19) yields a negative value, then 𝑎0
𝑚𝑖𝑛 should be assigned a zero-boundary value 

instead.  

In accordance to (17), in the case of  𝑎0𝑎5 = 𝑎1𝑎4,  𝑎0𝑎3 = 𝑎1𝑎2, 𝑎𝑛𝑑 𝑎2𝑎5 = 𝑎3𝑎4, i.e. when 

(17) yields 0=0, the following special case of marginal stability or marginal instability when four 

roots of polynomial out of five are located on jω -axis of the s-plane has been derived. If  𝑎0𝑎5 =
𝑎1𝑎4,  𝑎0𝑎3 = 𝑎1𝑎2, 𝑎2𝑎5 = 𝑎3𝑎4  and 𝑎3

2 > 4𝑎1𝑎5 ,  𝑎2
2 > 4𝑎0𝑎4, the system becomes marginally 

stable and the systems characteristic polynomial will have four roots (two pairs of different 

conjugate complex numbers) located symmetrically on jω-axis of the s-plane and one root (negative 

real number) located on the real axis of the s-plane. Subsequently, if  𝑎0𝑎5 = 𝑎1𝑎4,  𝑎0𝑎3 = 𝑎1𝑎2,
𝑎2𝑎5 = 𝑎3𝑎4  and 𝑎3

2 = 4𝑎1𝑎5 ,  𝑎2
2 = 4𝑎0𝑎4, the system becomes marginally  unstable but with 

four repeated roots (two pairs of same conjugate complex numbers) located symmetrically on jω-

axis of s-plane and one root (negative real number) located on the real axis of the s-plane. Should 

be notes that if conditions  𝑎0𝑎5 = 𝑎1𝑎4 𝑎𝑛𝑑 𝑎0𝑎3 = 𝑎1𝑎2 are satisfied then condition 𝑎2𝑎5 =
𝑎3𝑎4 is satisfied by default as well. In both cases, the expressions (14) and (15) have two common 

real positive roots k. 

The example of a system polynomial that has marginal stability is 4𝑠5 + 𝑠4 + 8𝑠3 + 2𝑠2 +
𝑠 + 0.25 = 0 and Fig. 3 shows response of the system to the unity input. The example of a system 

polynomial that has marginal instability is 𝑠5 + 𝑠4 + 8𝑠3 + 8𝑠2 + 16𝑠 + 16 = 0 and Fig. 4 shows 

response of the system to the unity input. The difference in both system responses with the same 
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conditions for the coefficient values  𝑎0𝑎5 = 𝑎1𝑎4,  𝑎0𝑎3 = 𝑎1𝑎2, 𝑎2𝑎5 = 𝑎3𝑎4 can be seen clearly 

in Fig. 3 and Fig. 4. This unique condition of marginal stability or instability was not identified by 

using the Routh method of stability analysis.  

 

 

 
Figure 3 Marginally stable system (Rule 6) 

 

 
 

Figure 4. Unstable system (Rule 6) 

 

c. Stability criterion for the sixth-order dynamic system  

 

The sixth-order system is presented by the following characteristic polynomial:      
                         

𝑎6𝑠6 + 𝑎5𝑠5 + 𝑎4𝑠4 + 𝑎3 𝑠
3 + 𝑎2 𝑠

2 + 𝑎1𝑠 + 𝑎0 = 0                           (21) 
  

Solving the boundary problem for the system polynomial (21) coefficients can be done by 

taking n=6 (even number) in (3). It leads to the following set of two non-linear equations: 
 

𝑎6 = (𝑎4 − (𝑎2 − 𝑎0𝑘)𝑘)𝑘                                                  (22) 

𝑎5 = (𝑎3 − 𝑎1𝑘)𝑘                                                                 (23)                                                                                                  
 

By excluding 𝑘 from the expressions (22) and (23) the necessary marginal stability criteria for 

the system (21) coefficients can be analytically derived. Th resulting equation is expressed as 

follows: 
 

𝐴𝑎6
2 − 𝐵𝑎6 + 𝐶 = 0,                                                        (24) 

 

where: 
 

𝐴 = 𝑎1
3, 

𝐵 = (𝑎1𝑎2 − 𝑎0𝑎3)(3𝑎1𝑎5 − 𝑎3
2) + 𝑎1

2(𝑎3𝑎4 − 𝑎2𝑎5), 
𝐶 = −𝑎5[(𝑎3𝑎4 − 𝑎2𝑎5)(𝑎1𝑎2 − 𝑎0𝑎3) − (𝑎1𝑎4 − 𝑎0𝑎5)2]. 
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The positive solution for 𝑎6 in equation (24) exists, if the following condition satisfies: 
 

𝐵2 − 4𝐴𝐶 > 0                                                            (25) 
 

As a conclusion, it can be stated that (24) presents the necessary and sufficient boundary or 

marginal stability expression for the coefficients of (21) provided conditions (16), (18), and (25) are 

fully satisfied. The analysis shows that when the coefficients reach their stability boundary values, 

the system becomes marginally stable with two (i.e. one pair of conjugate complex numbers) out of 

five roots located symmetrically on jω-axis of the s-plane and with one of the roots (negative real 

number) located on the real axis of the s-plane. In this case, the expressions (22) and (23) have only 

one common real positive root k. The expression (24) can be easily used to define the boundary 

values of any coefficient of the characteristic equation (21). 

In special case of marginal stability, when 𝐵2 = 4𝐴𝐶, 𝑎6, has only one value and the sixth-

order system (21) becomes marginally stable with four (two pairs of different conjugate complex 

numbers) roots symmetrically located on jω-axis of the s-plane and two roots (one pair of 

conjugate complex numbers) located symmetrically on left half of the s-plane. In this special case 

the expressions (22) and (23) have two common real positive roots k. The example of such system 

polynomial is shown below:  
 

𝑠6 + 2𝑠5 + 4𝑠4 + 3𝑠3 + 4𝑠2 + 0.5𝑠 + 0.625 = 0 
 

Fig. 5 shows the response of this system to the unity input. The validity of the Rules 7, 8, 9 

have been verified by solving a numerical example of the systems with randomly selected 

polynomial coefficients.  
 

 
 

Figure 5 Marginally stable system 
 

The attempt to derive stability boundary equation for the 6th order system by using Routh 

array (three columns and seven rows) leads to the following preliminary formulas:  
 

𝐸𝐷 − 𝐶𝑎0 = 0 

𝐸 = (𝐵𝐶 − 𝐴𝐷)/𝐶 

𝐷 = (𝐴𝑎1 − 𝑎5𝑎0)/𝐴 

𝐶 = (𝐴𝑎3 − 𝐵𝑎5)/𝐴 

𝐵 = (𝑎5𝑎2 − 𝑎6𝑎1)/𝑎5 

𝐴 = (𝑎5𝑎4 − 𝑎6𝑎3)/𝑎5 
 

Substituting these expressions one into another does not guarantee that the final expression for 

𝑎6 can be presented in the form of a quadratic equation and this demonstrates the deficiency and 

complexity of the Routh approach for the sixth and higher orders system stability analysis.   
 

Numerical analysis of stability boundaries for the systems with orders higher than six. 

The analytical solution of the boundary problem (in form of radicals for k) for dynamic systems 

with any order is possible by systematically excluding k from equations (2) or (3) and finally 

reaching one polynomial equation with higher order for the coefficients of the characteristic 
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equation (1). However, it becomes a tedious process for the systems with orders n≥7. In general, the 

system of any order is marginally stable if equations (2) or (3) satisfy the fundamental law of 

marginal or boundary stability, that is if they have at least one common positive roots k and have a 

pair or pairs of conjugate roots on jω-axis of the s-plane. 

This low has been applied numerically to an eleventh order (n=11) system to prove validity of 

the law. The system with order n=11 is presented by the following characteristic polynomial: 
         

𝑎11𝑠11 + 𝑎10𝑠10 + 𝑎9𝑠9 + 𝑎8𝑠8+𝑎7𝑠7 + 𝑎6𝑠6 + 𝑎5𝑠5 + 

+𝑎4𝑠4 + 𝑎3𝑠3 + 𝑎2𝑠2 + 𝑎1𝑠 + 𝑎0 = 0                                  (29)   

                                                                        

The stability boundary equations (2) for this system n=11 (odd number) can be presented in 

the following form:  
 

𝑎11 = (𝑎9 − (𝑎7 − (𝑎5 − (𝑎3 − 𝑎1𝑘)𝑘)𝑘)𝑘)𝑘                                 (30) 

𝑎10 = (𝑎8 − (𝑎6 − (𝑎4 − (𝑎2 − 𝑎0𝑘)𝑘)𝑘)𝑘)𝑘                                 (31) 
 

Alternatively, (30) and (31) can be rewritten in the following forms with alternating signs for 

the terms: 
 

𝑎11 = 𝑎9𝑘 − 𝑎7𝑘2 + 𝑎5𝑘3 − 𝑎3𝑘4 + 𝑎1𝑘5                                 (32) 

𝑎10 = 𝑎8𝑘 − 𝑎6𝑘2 + 𝑎4𝑘3 − 𝑎2𝑘4 + 𝑎0𝑘5                               (33) 

 

In order to have a marginal stability condition, the roots of both fifth order polynomials (32) 

and (33) must have at least one real positive root in common. A randomly selected example of such 

equation (32) that has real positive roots is as follows: 
 

0.3 = 2.7𝑘 − 7.2𝑘2 + 6.6𝑘3 − 2.4𝑘4 + 0.3𝑘5                    (34) 
 

Five roots of this equation are, in fact, real positive numbers: 
 

𝑘 = [3.247, 2.618, 1.555, 0.382, 0.1981]                             (35) 
 

In order for equation (33) to have at least one root to be the same with any root of equation 

(34), each of the k roots (35) is inserted into equation (33) with randomly selected coefficients 

except 𝑎0.  A random example of equation (33) can be presented as follows: 
 

0.1 = 0.6𝑘 − 0.9𝑘2 + 0.5𝑘3 − 0.1𝑘4 + 𝑎0𝑘5                      (36) 
 

Calculation of 𝑎0 for each k root from the list (35) yields the following result: 
 

𝑎0= [0.004544, 0.0034, 0.0053, -2.9034, 41.7902]              (37) 
 

Then the polynomial (29) with all the preselected coefficients is presented as follows: 
 

0.3𝑠11 + 0.1𝑠10 + 2.7𝑠9 + 0.6𝑠8 + 7.2𝑠7 + 0.9𝑠6  + 

+6.6𝑠5 + 0.5𝑠4 + 2.4𝑠3 + 0.1𝑠2 + 0.3𝑠 + 𝑎0=0                                 (38) 
 

Solution of equation (38) for five possible 𝑎0 from (37) shows that only two of them present 

actual stability boundaries for the polynomial (38), namely 𝑎0
𝑚𝑖𝑛 = 0.003444 and 𝑎0

𝑚𝑎𝑥 =0.004544. 

These two boundary values of 𝑎0  in polynomial (38) lead to one pair of conjugate roots on the jω-

axis of the s-plane, namely 0 ± 0.6180i and 0 ± 0.5550i. The system turns to be fully stable in 

between these two boundary values of 𝑎0. The roots of boundary polynomial (36) at the boundary 

values of 𝑎0 yield real positive values. For example, for 𝑎0 = 0.004544 the roots of polynomial (36) 

yield 𝑘 = [3.267, 2.6180, 1.8658, 1.0425, 0.2451]. Therefore, two boundary polynomials (32) and 

(33) have one common positive real root k=2.6180 as it was stated by the fundamental law of 

marginal or boundary stability.  
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Figure 6 Marginally stable system 

 
 

Figure 7. System with absolute stability 

 

Fig. 6 shows the response of the system with characteristic polynomial (38) having value of 

𝑎0 =0.00344 to step input 0.01. From Fig. 6 it can be seen that the system is in the state of marginal 

stability. Fig. 7 shows the response of the system to step input 0.01 for 𝑎0 selected in between its 

boundary values [0.003444, 0.004544]. From Fig. 7 it can be seen that the system is in the state of 

absolute stability.  
 

Stability range for the closed-loop control systems. The s-domain transfer function for the 

closed-loop control system can be expressed as follows: 
 

 

𝑌(𝑠)

𝑅(𝑠)
=

𝐺(𝑠)𝐾(𝑠)

1 + 𝐺(𝑠)𝐾(𝑠)𝐻(𝑠)
                                                     (39) 

 
 

In (39), R(s) is the input signal, Y(s) is the output signal, H(s) is the feedback signal, G(s) is 

the plant model (system under observation), and K(s) is the controller model.  

Expressions (2) or (3) can be successfully applied to identify stability ranges for the gains of 

closed-loop control system (39).  
 

a. Case of single gain controller design  
 

The stability analysis of a system with single gain controller can be demonstrated on the 

model of hard disk drive with the lead compensator. The plant model of the hard disk drive system 

can be expressed as follows [19]: 
 

𝐺(𝑠) = 𝐴/𝐵 , where                                                              (40) 

 

𝐴 = 𝑛4𝑠4 + 𝑛3𝑠3 + 𝑛2𝑠2 + 𝑛1𝑠 + 𝑛0, 

𝐵 = 𝑑10𝑠10 + 𝑑9𝑠9 + 𝑑8𝑠8 + ∙∙∙  +𝑑4𝑠4 + 𝑑3𝑠3 + 𝑑2𝑠2, 
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where:  

𝑛4 = 1.197 ∙ 1026,  𝑛3 = 2.12 ∙ 1029, 𝑛2 = 5.826 ∙ 1034, 

𝑛1 = 4.366 ∙ 1037,  𝑛0 = 6.189 ∙ 1042, 𝑑10 = 1, 𝑑9 = 5336, 
𝑑8 = 4.124 ∙ 109,  𝑑7 = 1.302 ∙ 1013,  𝑑6 = 4.216 ∙ 1018, 
𝑑5 = 6.72 ∙ 1021,  𝑑4 = 1.198 ∙ 1027,  𝑑3 = 7.496 ∙ 1029, 

 𝑑2 = 9.668 ∙ 1034. 
 

The lead compensator with a proportional gain 𝑘𝑝 can be presented as follows: 
 

𝐾(𝑠) = 𝑘𝑝(4𝑠 + 2)/(𝑠 + 2)                                               (41) 
 

Substituting (40), (41) into (39) and assuming 𝐻(𝑠) = 1, yields the following close-loop 

system characteristic polynomial (29), where: 
 

𝑎11 = 𝑑10, 𝑎10 = 𝑑9 + 2𝑑10,  𝑎9 = 𝑑8 + 2𝑑9, 
𝑎8 = 𝑑7 + 2𝑑8, 𝑎7 = 𝑑6 + 12𝑑7, 𝑎6 = 𝑑5 + 2𝑑6, 

𝑎5 = 𝑑4 + 2𝑑5 + 4𝑘𝑝𝑛4, 𝑎4 = 𝑑3 + 2𝑑4 + 2𝑘𝑝(2𝑛3 + 𝑛4), 

𝑎3 = 𝑑2 + 2𝑑3 + 2𝑘𝑝(2𝑛2 + 𝑛3), 

𝑎2 = 2𝑑2 + 2𝑘𝑝(2𝑛1 + 𝑛2), 𝑎1 = 2𝑘𝑝(2𝑛0 + 𝑛1), 

𝑎0 = 2𝑘𝑝𝑛0. 
 

For the eleventh order characteristic polynomial (29), two stability boundary polynomials can 

be presented as (32) and (33). By substituting all the coefficients into (32) and (33) and dividing 

(32) by (33), proportional gain 𝑘𝑝 can be excluded from the resulting single algebraic 6th order 

stability boundary equation with variable k as follows: 
 

𝑝6𝑘6 + 𝑝5𝑘5 + 𝑝4𝑘4 + 𝑝3𝑘3 + 𝑝2𝑘2 + 𝑝1𝑘 + 𝑝0,                (42) 

where: 

𝑝6 = −𝑑𝑑0𝑛𝑛3 + 𝑑𝑑1𝑛𝑛2 − 𝑑𝑑2𝑛𝑛1 + 𝑑𝑑3𝑛𝑛0, 
𝑝5 = 𝑑𝑑0𝑛𝑛5 − 𝑑𝑑1𝑛𝑛4 + 𝑑𝑑2𝑛𝑛3 − 𝑑𝑑3𝑛𝑛2 + 𝑑𝑑4𝑛𝑛1 − 𝑑𝑑5𝑛𝑛0, 

𝑝4 = −𝑑𝑑2𝑛𝑛5 + 𝑑𝑑3𝑛𝑛4 − 𝑑𝑑4𝑛𝑛3 + 𝑑𝑑5𝑛𝑛2 − 𝑑𝑑6𝑛𝑛1 + 𝑑𝑑7𝑛𝑛0, 
𝑝3 = 𝑑𝑑4𝑛𝑛5 − 𝑑𝑑5𝑛𝑛4 + 𝑑𝑑6𝑛𝑛3 − 𝑑𝑑7𝑛𝑛2 + 𝑑𝑑8𝑛𝑛1 − 𝑑𝑑9𝑛𝑛0, 

𝑝2 = −𝑑𝑑6𝑛𝑛5 + 𝑑𝑑7𝑛𝑛4 − 𝑑𝑑8𝑛𝑛3 + 𝑑𝑑9𝑛𝑛2 − 𝑑𝑑10𝑛𝑛1 + 𝑑𝑑11𝑛𝑛0, 
𝑝1 = 𝑑𝑑8𝑛𝑛5 − 𝑑𝑑9𝑛𝑛4 + 𝑑𝑑10𝑛𝑛3 − 𝑑𝑑11𝑛𝑛2, 

𝑝0 = −𝑑𝑑10𝑛𝑛5 + 𝑑𝑑11, 
𝑑𝑑11 = 𝑑10,  𝑑𝑑10 = 𝑑9 + 2𝑑10,  𝑑𝑑9 = 𝑑8 + 2𝑑9,  

𝑑𝑑8 = 𝑑7 + 2𝑑8,  𝑑𝑑7 = 𝑑6 + 2𝑑7,  𝑑𝑑6 = 𝑑5 + 2𝑑6,  
𝑑𝑑5 = 𝑑4 + 2𝑑5,  𝑑𝑑4 = 𝑑3 + 2𝑑4,  𝑑𝑑3 = 𝑑2 + 2𝑑3,  

𝑑𝑑2 = 𝑑1 + 2𝑑2,  𝑑𝑑1 = 𝑑0 + 2𝑑1,  𝑑𝑑0 = 2𝑑0,  
𝑛𝑛5 = 2𝑛4, 𝑛𝑛4 = 2𝑛3 + 𝑛4, 𝑛𝑛3 = 2𝑛2 + 𝑛3,   
𝑛𝑛2 = 2𝑛1 + 𝑛2, 𝑛𝑛1 = 2𝑛0 + 𝑛1, 𝑛𝑛0 = 𝑛0.  

 

Solution of equation (42) yields four real and two complex k roots. In accordance to Rule 10, 

only real roots could be considered for the marginal stability of the closed-loop system. Four real 

roots are 0.4912*10-6, 0.0139*10-6, 0.0077*10-6, 0.0006*10-6. 

Value of 𝑘𝑝at the state of marginal stability can be calculated from (32) and presented as 

follows: 
 

𝑘𝑝= C/D, where                                                                       (43) 

C= 𝑑𝑑11 − 𝑑𝑑9𝑘 + 𝑑𝑑7𝑘2 − 𝑑𝑑5𝑘3 + 𝑑𝑑3𝑘4 − 𝑑𝑑1𝑘5, 

D= 𝑛𝑛5𝑘3 − 𝑛𝑛3𝑘4 + 𝑛𝑛1𝑘5. 
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Substituting four real roots of (42) into (43) yield three positive and one negative values of 

𝑘𝑝. Negative value leads to instability of the system because the coefficient 𝑎0 of the system is 

directly proportional 𝑘𝑝, i.e. 𝑎0 = 2𝑘𝑝𝑛0, and cannot be negative. As a result, the minimum 

stability limit for the 𝑘𝑝 is zero, i.e. 𝑘𝑚𝑖𝑛 = 0. The remaining three calculated positive value for 𝑘𝑝 

are 0.0079, 0.2119, 0.1726. Solving for the roots of characteristic polynomial (29) for these three 

values of 𝑘𝑝 yields a pair of roots located on the imaginary axis of s-plane ±𝑗0.1427 ∗

104, ±𝑗0.8488 ∗ 104, ±𝑗1.1411 ∗ 104, respectively. The analysis of all solutions shows that only 

one gain value 𝑘𝑝𝑚𝑎𝑥 =0.0079 corresponds to the marginal stability condition of the closed-loop 

system where all the roots located at the left half of s-plane. Three pairs of roots located on 

imaginary axis of s-plane  [±𝑗0.1427, ±𝑗0.8488, ±𝑗1.1411] ∗ 104 can be verified by plotting root 

locus graphs and it is shown in Fig. 8.  

 
Figure 8. System with absolute stability 

 

b. Case of multiple gain controller design 

 

The advantage of applying expressions (2) and (3) for stability analysis of higher-order 

closed-loop dynamic systems can be demonstrated for the case of applying multiple gain controllers 

to the system. The criteria (2) and (3) was tested on the example of model of two-inertia system 

with PD controller. The plant model of such two-inertia system can be expressed as follows [20]: 
 

𝐺(𝑠) = 𝑛0/( 𝑑4𝑠4 + 𝑑3𝑠3 + 𝑑2𝑠2 + 𝑑1𝑠 + 𝑑0), where:                             (44) 

𝑛0 = 0.0625, 𝑑4 = 1, 𝑑3 = 2, 𝑑2 = 1.5, 𝑑1 = 0.5, 

𝑑0 = 0.0625. 
 

Substituting (44), 𝐾(𝑠) = 𝑘𝑝 + 𝑠𝑘𝑑 into (39) and assuming 𝐻(𝑠) = 1, yields the following 

fourth-order characteristic polynomial of the close-loop system: 
 

𝑑4𝑠4 + 𝑑3𝑠3 + 𝑑2𝑠2 + (𝑑1 + 𝑛0𝑘𝑑)𝑠 + (𝑑0 + 𝑛0𝑘𝑝) = 0 (45) 
 

The two stability boundary polynomials (3) for the characteristic polynomial (45) can be 

presented as follows: 
 

𝑑4 = 𝑘𝑑2 − 𝑘2(𝑑0 + 𝑛0𝑘𝑝),                                                (46) 

𝑑3 = 𝑘(𝑑1 + 𝑛0𝑘𝑑).                                                       (47) 
 

By dividing (46) by (47), the following expression for 𝑘𝑑 can be derived: 
 

𝑘𝑑 = [𝑑2𝑑3 − 𝑑3(𝑑0 − 𝑛0𝑘𝑝)𝑘 − 𝑑1𝑑4] 𝑛0𝑑4⁄                          (48) 
 

Substituting (48) into (47) yields the following quadratic equation: 
 

(𝑑0𝑑3 + 𝑑3𝑛0𝑘𝑝)𝑘2 − 𝑑2𝑑3𝑘 + 𝑑3𝑑4 = 0.                         (49) 
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Solution of (49) can be presented as follows: 
 

𝑘 = [𝑑2 ± √𝑑2
2 − 4𝑑4(𝑑0 + 𝑛0𝑘𝑝)] 2(𝑑0 + 𝑛0𝑘𝑝)⁄                      (50) 

 

The stability boundary is achieved when the expression under square root is equal zero and 

solution of (50) yields a single positive answer for 𝑘 (Rule 10). As a result, at the stability boundary 

condition for the system the expression for maximum limit of  𝑘𝑝 can be derived from (50) as 

follows: 
 

𝑘𝑝
𝑚𝑎𝑥 = (𝑑2

2 − 4𝑑0𝑑4) (4𝑑4𝑛0)⁄                                          (51) 
 

The minimum limit of 𝑘𝑝 can be obtained from the condition that for a stable system all the 

coefficients of characteristic polynomial (45) must be positive. Therefore, the coefficient 𝑑0 + 𝑛0𝑘𝑝 

must have a positive value and the minimum value for 𝑘𝑝 can be calculated as follows: 
 

𝑘𝑝
𝑚𝑖𝑛 = −𝑑0/𝑛0                                                                (52) 

 

In order to provide an absolute stability of the closed-loop system, the following condition for 

𝑘𝑝 must be provided: 
 

𝑘𝑝
𝑚𝑖𝑛 < 𝑘𝑝 <   𝑘𝑝

𝑚𝑎𝑥                                                              (53) 
 

For any value of 𝑘𝑝 within the limits (53), two values for 𝑠𝑠 are be calculated from (50) and 

subsequently two corresponding limit values for 𝑘𝑑 can be calculated from (48). An additional 

condition for the system stability is that the minimum limit for 𝑘𝑑 must be more than one calculated 

from the corresponding coefficient of the system characteristic polynomial, i.e. 
 

 𝑘𝑑
𝑚𝑖𝑛 >−𝑑1/𝑛0.                                                                 (54) 

 

Using all the stability conditions (54), (53), (52), (51), (50), and (48), the following graph of 

function 𝑘𝑑 = 𝑓(𝑘𝑝) for the boundary values can be obtained, as shown in Fig. 9. For all the 

boundary values of the system gains, the solution of the characteristic polynomial (45) yields one 

pair of conjugate roots at the imaginary axis of s-plane, i.e. the system is at the condition of 

marginal stability. 
 

 
 

Figure 9. Stability boundary curves for 𝑘𝑑 = 𝑓(𝑘𝑝) 

 

Fig. 9 shows the region of absolute stability of the system that lies in between upper and 

lower lines of the graph. The highest range of stability is at 𝑘𝑝
𝑚𝑖𝑛 = −1, where -8 < 𝑘𝑑 < 40. At  

 𝑘𝑝
𝑚𝑎𝑥 = 8, the stability region is reduced to a single value 𝑘𝑑 =16. 

In case of applying PID controller  𝐾(𝑠) = 𝑘𝑝 + 𝑠𝑘𝑑 + 𝑘𝑖/𝑠 to the model of two-inertia 

system [19], the following fifth order characteristic equation can be obtained: 
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𝑑4𝑠5 + 𝑑3𝑠4 + 𝑑2𝑠3 + (𝑑1 + 𝑛0𝑘𝑑)𝑠2 + (𝑑0 + 𝑛0𝑘𝑝)𝑠 + 𝑛0𝑘𝑖 = 0                  (55) 
 

Two stability boundary polynomials (2) for the characteristic polynomial (55) can be 

presented as follows: 
 

𝑑4 = 𝑘𝑑2 − 𝑘2(𝑑0 + 𝑛0𝑘𝑝),                                                (56) 

𝑑3 = 𝑘(𝑑1 + 𝑛0𝑘𝑑) − 𝑘2𝑛0𝑘𝑖                                              (57) 
 

By dividing (56) by (67), the following formula for 𝑘𝑝 can be obtained: 
 

𝑘𝑝 = (𝑑2𝑑3 − 𝑑1𝑑4 − 𝑛0𝑑4𝑘𝑑)/(𝑛0𝑑3𝑘) − 

−(𝑑0𝑑3 − 𝑛0𝑑4𝑘𝑖)/(𝑛0𝑑3)                                                  (58) 
 

Substituting (58) into (56) yields the following quadratic equation: 
 

(𝑛0𝑘𝑖)𝑘2 − (𝑑1 + 𝑛0𝑘𝑑)𝑘 + 𝑑3 = 0                                 (59) 
 

Solution of (59) can be presented as follows: 
 

𝑘 = [𝑑1 + 𝑛0𝑘𝑑 ± √(𝑑1 + 𝑛0𝑘𝑑)2 − 4𝑑3𝑛0𝑘𝑖] (2𝑛0𝑘𝑖)⁄  (60) 
 

The stability boundary is achieved when the expression of square root in (60) is equal zero 

and solution of equation (60) yields a single positive answer for 𝑘 (Rule 10).  This condition yields 

the following boundary equation for 𝑘𝑑: 
 

(𝑛0
2)𝑘𝑑

2 + (2𝑛0𝑑1)𝑘𝑑 + 𝑑1
2 − 4𝑛0𝑑3𝑘𝑖 = 0                              (61) 

 

The solution of (61) yields the boundary equation for 𝑘𝑑 as follows: 
 

𝑘𝑑 = −𝑑1 ± 2 √𝑑3𝑛0𝑘𝑖                                                        (62) 
 

A stability boundary is achieved when the expression of square root in (62) is equal to zero, 

i.e. when  𝑘𝑖=0. Therefore, for an absolute stability of the closed-loop system, the following 

condition must be satisfied:   
       

𝑘𝑖 > 0                                                                        (63)  
  

For any value 𝑘𝑖 > 0, formula (62) yields two limiting values for 𝑘𝑑. The additional condition 

for the system stability is that the minimum limit for 𝑘𝑑 must be more than one calculated from the 

corresponding coefficient of the system characteristic polynomial, i.e. 
 

𝑘𝑑
𝑚𝑖𝑛 >−𝑑1/𝑛0.                                                             (64) 

 

By substituting the two limiting values of 𝑘𝑑 into (60) and subsequently into (58), the 

remaining two limiting values for 𝑘𝑝 can be obtained. An additional condition for the system 

stability is that the minimum limit for 𝑘𝑝 must be more than one calculated from the corresponding 

coefficient of the system characteristic polynomial, i.e. 
 

 𝑘𝑝
𝑚𝑖𝑛 >−𝑑0/𝑛0.                                                                       (65) 

 

Using all the stability conditions (65), (64), (63), (62), (60), and (58), the following 3D graph 

of function 𝑘𝑝 = 𝑓(𝑘𝑑 , 𝑘𝑖) for the boundary lines of 𝑘𝑝, 𝑘𝑑  gains versus few values of 𝑘𝑖 is shown 

in Fig. 10. The absolute stability of the system is confined within the space outlined by the limiting 

values of three gains.  
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Fig.11 shows only 2D view of the lines shown in Fig. 10. The maximum values for 𝑘𝑝, 𝑘𝑑, 

𝑘𝑖 gains are defined by the terminal condition when 𝑘𝑝
𝑚𝑖𝑛 = 𝑘𝑝

𝑚𝑎𝑥 for raising in steps values of 𝑘𝑖 

(63) and is calculated on MATLAB software. Increasing 𝑘𝑖 reduces that stability range of the 

system, i.e. stability ranges for other two gains. For all the boundary values of the system gains the 

solution of the characteristic polynomial (55) yields one pair of conjugate roots at the imaginary 

axis of s-plane, i.e. the system is at the condition of marginal stability. An exception is for the points 

where  𝑘𝑝
𝑚𝑖𝑛 = 𝑘𝑝

𝑚𝑎𝑥. Fig. 12 shows a 2D graph of 𝑘𝑝 = 𝑓(𝑘𝑑) for a single value 𝑘𝑖=0.  

 

 
Figure 10. 3D Stability boundary curves for 𝑘𝑝 = 𝑓(𝑘𝑑 , 𝑘𝑖) 

 

 
Figure 11. 2D Stability boundary curves for 𝑘𝑝 = 𝑓(𝑘𝑑 , 𝑘𝑖) 

 

 
Figure 12. 2D Stability boundary curves for 𝑘𝑝 = 𝑓(𝑘𝑑), 𝑘𝑖=0 

 

If 𝑘𝑖=0, then 𝑘𝑑
𝑚𝑖𝑛 = −8<𝑘𝑑<40 and 𝑘𝑝

𝑚𝑖𝑛 = −1<𝑘𝑝<8 (Fig.11). At the left intersection of 

lines (𝑘𝑑
𝑚𝑖𝑛 = −8 and 𝑘𝑝

𝑚𝑖𝑛 = −1), the roots of the closed-loop system are: -1.0000 + 0.7071i;  

-1.0000 - 0.7071i; 0.0000 + 0.0000i; -0.0000 - 0.0000i; -0.0000 - 0.0000i. At the right 

intersection of lines (𝑘𝑑
𝑚𝑎𝑥 = 40 and 𝑘𝑝

𝑚𝑖𝑛 = −1), the roots of the closed − loop system are: -2 + 

0.0000i; -0.0000 + 1.2246i; -0.0000 - 1.2246i; -0.0000 + 0.0000i; -0.0000 + 0.0000i. When 𝑘𝑖 

reaches its maximum value (𝑘𝑖
𝑚𝑎𝑥 =18), the plots on Fig. 9 and Fig. 10 are converged to a single 

point and other gains reach their single maximum values, i.e. 𝑘𝑝
𝑚𝑎𝑥 = 8, 𝑘𝑑

𝑚𝑎𝑥 = 40. The roots of 

the system characteristic polynomial at this point are -2.0000 + 0.0000i; -0.0000 + 0.8660i; -0.0000 

- 0.8660i; 0.0000 + 0.8660i; 0.0000 - 0.8660i, i.e., the system has double conjugate roots on 

imaginary axis of s-plane.  

Conclusions. The paper presents an effective and simple tool for analytical solution of 

stability problem of higher-order linear time-invariant dynamic systems. It has a major advantage 

compared to Routh–Hurwitz technique. The proposed universal stability criteria (2) or (3) establish 
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unique relations between the stability boundary values of the system characteristic polynomial 

coefficients and the newly introduced additional parameter k. It is a new approach and there are no 

similarities found to these criteria in the literature. The newly-developed method is a universal one 

and can be applied to any higher-order dynamic system. The authors of this paper have discovered 

and established a set of general expressions (2) or (3) that can be applied for derivation of necessary 

stability criteria for any order linear time-invariant dynamic system. The single analytical 

expressions of the non-zero coefficients of the system characteristic polynomial at its stability 

boundary conditions have been derived in section III for the systems with orders from 3 to 6 and 

successfully tested by using MATLAB software for numerous examples. The method has also been 

extended to prove numerically the stability boundaries problem solution for any system with order 

higher than six in section IV for a randomly selected example of eleventh-order system. The 

stability range of values for one of the coefficients of the characteristic equation for each of the 

dynamic system with orders from three to six has been derived analytically. The numerical example 

of eleventh order system is presented in the paper to prove validity of fundamental law of marginal 

or boundary stability for systems with orders higher than six. As a unique achievement, the 

marginal stability conditions for dynamic systems with possible zero coefficients and with multiple 

roots on the jω-axis of the s-plane have also been discussed in details. These results are new and 

have not been published currently in the literature and were obtained for special cases of marginal 

stability when the same exactly set of zero coefficients the system can be either in the state of 

marginal stability or marginal instability, i.e. the system exhibits a dual behaviour. Section V is 

dedicated to use of criteria (2) and (3) to provide marginal and absolute stability for the closed-loop 

control systems with proportional, derivative and integral gains. The paper discusses in detail the 

derivation of equations for precise stability boundary values of 𝑘𝑝, 𝑘𝑑 , 𝑘𝑖 gains based on the two-

polynomial criteria (2) and (3). The obtained results of analytical calculation of precision stability 

boundary values for a multiple-gain higher-order closed-loop system do not have analogy currently 

in the control theory. The results obtained in this paper prove that the developed system stability 

criteria or algorithm for stability analysis of a higher-order linear dynamic system is a step forward 

in analysing stability conditions of complex dynamic systems and deriving precise analytical 

expressions for multiple gains of closed-loop control systems. This method is successfully tested on 

the model of hard disk drive with single-gain lead compensator [19] and on the model of two-inertia 

system with multiple gain controller design [20].   
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